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Extended abstract. 

Static graphs have a long history of being used to efficiently represent static problems. In 

these problems, all the data are known from the start. The real world is not static, however, 

and the solutions to static problems may not always be used [13, 2]. Some data may change, 

or be unknown in advance. In territorial systems, for example, the traversal duration of a 

location may depend on traffic density, the presence or not of traffic jams, work in progress, 

etc. that are all time dependent and usually hard to predict. Thus several approaches have been 

proposed to study parametric graphs [1] and dynamic graphs [6]. 

Fully dynamic algorithms, for example, are applied to problems that can be solved in 

polynomial time. They start with a computed optimal solution, and then try to maintain them 

when changes occur in the problem. They often propose sophisticated data structures to reach 

this goal [8, 11]. 

When the delay between a change and the moment a new solution is needed is very small, or 

when the problem itself is NP-hard, faster algorithms are needed  These reoptimizing 

algorithms usually start from an initial solution that is not optimal but is expected to be of 

good quality, if possible. As soon a change is detected, they compute a new solution, trying to 

do it faster that classical algorithms. Or they compute a new solution as fast as the classical 

algorithms but this resulting solution is better than the ones found by classical algorithms. 

These algorithms include meta-heuristics such as ants colony algorithms [5], or swarm 

algorithms [3]. 

Another approach used is probabilistic. Probabilities are associated to some variables in the 

graph, such as the value of a weight, or the presence of a vertex or of a constraint, for 

example. The algorithms used in these problems usually compute a solution then do some 

robustness analysis in the probability space [9]. Or they do a quick re-optimization of the 

solution once the parameters of the problem are perfectly known [4, 10].   

In this paper, we study weakly dynamic directed acyclic graphs. In these weakly dynamic 

graphs with positive weighted arcs, one or two arcs are known to be non stable. That is, the 

weight of each of these non stable arcs may change at any time. All other arcs have stable 

weights that never change. We are interested in the “One-to-All” shortest path problem (SPP), 

that is, in finding what are the shortest paths from one vertex to all other vertices of this 

graph. This must be done considering the weights of the non stable arcs. Preliminary results 

on weakly dynamic graphs with only one variable arc or edge were presented in [12, 7]. Here, 

we propose an efficient algorithm that pre-computes alternative shortest paths for all possible 



values of the variable weights. It also computes very small sets of very simple critical 

conditions. When the non stable weights change, the shortest paths for these new values may 

then directly and immediately be deduced from the critical conditions and may immediately 

be used without any further recomputation.  

 

We consider a directed acyclic graph (DAG) G=(V,E). V is the set of vertices, E is the set of 

arcs, and to each arc is associated a positive weight. Almost all the arcs are stable and their 

weights never change. However two known arcs are not stable and their weights may change 

at any time. The first variable arc is denoted (x
1
1, x

1
2), and its variable weight is x

1
. The 

second variable arc is denoted (x
2
1, x

2
2), and its variable weight is x

2
. We call this kind of 

DAG a weakly dynamic graph with two known variable arcs. 

 

Fig. 1 – Example of weakly dynamic graph with two variable arcs (in red on the graph). 

The length of a path is the sum of the weights of its arcs. Shortest paths that do not include 

any variable arc may be computed with Dijkstra algorithm. 

The proposed algorithm works in four steps 

1. it computes the shortest paths that do not include any variable arc, from the starting 

vertex to all other vertices, 

2. for each starting vertex x
r
1 of a variable arc (x

r
1, x

r
2) that was reached during step 1, it 

computes again shortest paths that do not include any variable arc, from the other 

vertex x
r
2 of the variable arc to all other vertices, 

3. for each starting vertex x
s
1 of a variable arc (x

s
1, x

s
2) that was reached during step 2, it 

computes again shortest paths that do not include any variable arc, from the other 

vertex x
s
2 of the variable arc to all other vertices, 

4. for each vertex, it finally compares up to 4 values 

a. the constant length of the shortest path that does not include any variable arc, 

b. the variable length of the shortest path that includes only the first variable arc, 

c. the variable length of the shortest path that includes only the second variable 

arc, 

d. the variable length of the shortest path that includes the two variable arc. 

When comparing the four lengths, some of them have the variable values of the variable arcs 

as parameters.  Thus, for a given vertex, it may happen that one path from the starting vertex 

may be better than another path for some particular values of the variable weights, and may be 

worse for some other values of the variable weights. 
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Example   : We now apply this algorithm on the graph of Fig. 1. 

Step1: Here we use Dijkstra’s algorithm to computed shortest paths that do not include any 

variable edge from a (origin) to all  other vertices, the short distance will be noted ds
0
(a, j): 

Vertex j a (origine) b x
1
1 x

1
2 x

2
1 x

2
2 p q 

ds
0
(a, j) 0 1 2 8 10 17 10 18 

Step2: Computes the shortest paths that do not include any variable arc, from the starting 

vertex x
r
1, x

r
2  of a variable arc to all other vertices : 

Vertex  j a b x
1
1 x

1
2 x

2

1 x
2

2 p q 

ds
1
(x

1
2,  j): shortest paths 

from the starting vertex of 

variable edge x
1

2 to all other 

-  -  -  0 3 9 2 10 

ds
1
(x

2
2,  j): shortest paths 

from the starting vertex of 

variable edge x
2

2 to all other 

- -  - -  -  - 4 1 

ds
0
(i, x

1
1) +  x

1
 + ds

1
(x

1
2, j) - - - 2+x

1
 2+ x

1
+3 2+ x

1
+9 2+ x

1
+2 2+ x

1
+10 

ds
0
(i, x

2
1) +  x

2
 + ds

1
(x

2
2, j) - - - - - 10+ x

2
 10+ x

2
+4 10+ x

2
+1 

Step3: Compute  ds
0
(i, x

1
1) + x

1
 + ds

1
(x

1
2,  x

2
1) + x

2 
+ ds

2
(x

2
2,  j) for all vertex j  

Vertex  j a b x
1

1 x
1
2 x

2
1 x

2
2 p q 

ds
0
(i, x

1
1) + x

1
 + ds

1
(x

1
2,  x

2
1) + x

2
 

+ ds
2
(x

2
2,  j) 

- - - - - 2+x
1
+3 

+ x
2
 

2+x
1
+3+x

2
 

+4 

2+x
1
+3+ x

2
 

+1 

Step4: Compare  the 4 values computed in the last steps to compute the shortest paths  from 

vertex a to all  other vertices j in function of  the variables edges  x
1
 and  x

2  
: 

Vertex  j a b x
1
1 x

1
2 x

2
1 x

2
2 p q 

Compute the shortest paths  

form a to all  other vertices 

j in function of  the 

variables edges   x1
 and  x2  

0 1 2 Min (8, 

2+x
1
) 

Min (10, 

5+x
1
) 

Min (17, 

11+x
1
,  

10+ x
2
, 

5+x
1
+ x

2
) 

Min (10, 

4+x
1
, 

14+ x
2
, 

9+ x
1
+ x

2
) 

Min (18 , 

12+x
1
, 

11+ x
2
, 

6+ x
1
+ x

2
) 

We call critical conditions of a given vertex, the set of length functions associated to the four 

paths to this given vertex computed by the algorithm. Because the functions of this set are 

constant, or very simple linear functions, they can be computed and compared very easily. 

Thus for each target vertex, a set of a maximum of four alternative paths can be stored along 

with the associated set of critical conditions. As soon as any variable weight changes, the 

critical conditions of the target vertex just need to be recomputed and compared. Then the 

new shortest path may be choosen among the alternative paths stored for this vertex. No 

recomputation of shortest paths is needed, no data beside the current values of the variable 

arcs need to be exchanged, and all decisions may be taken locally. The complexity of the 

algorithm itself is O(n
2
).  

The proposed algorithm can be used to build alternative routing tables in a computer network, 

or for the routing or re-routing of a truck in a truck delivery problem.  

In the future, we intend to work on extending this result to non directed graphs, and to the 

computation of longest paths for scheduling problem. 
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