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Abstract : In this paper, we consider the problem of scheduling tasks with fixed small communications delays on a virtual 

distributed memory multiprocessor when the tasks execution times are random. This problem extends the classical PERT 

scheduling problem with random execution times and no communications. We first present how to efficiently build pre-

schedulings for this problem. We then compute a lower bound of the average makespan of a given pre-scheduling. We finally 

propose a lower and an upper bound of the execution time of the best pre-scheduling. 
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1. Introduction 
 

The efficient use of distributed memory multiprocessors is a very hard problem that involves efficient 

scheduling of the different parts of the parallel application. The different tasks of the application must 

be scheduled on the available processors and the communications must be mapped on the 

communication network. 

 

Scheduling algorithms can be either static or dynamic. Static scheduling algorithms work at compile 

time, giving a solution ready for execution, while dynamic scheduling algorithms work at execution 

time and build the scheduling on-the-fly. While theoretically more efficient that dynamic algorithms, 

static scheduling algorithms suppose that the problem is deterministic, the execution and 

communication times being perfectly known at compile time. In [CoCh91], the authors present an 

optimal algorithm for the static scheduling of tasks of known duration with small communication 

delays and tasks duplication on a Virtual Distributed System. But tasks execution times are not always 

perfectly known, however. They may depend on the data, thus appearing random. Several papers deal 

with static scheduling of tasks graphs with random execution times, and no communication times. In 

[FrGr85] for example, the authors give in polynomial time lower bounds to the mean makespan. 

 

In this paper, we study the static scheduling problem where the tasks execution times are positive 

independent random variables, and the communication delays between the tasks are perfectly known, 

positive values. We first present the formal definition of this new scheduling problem. We then 

propose a lower bound to the mean makespan of any scheduling. We next present a lower and an 

upper bound of the mean makespan of all the possible most efficient schedulings. 

 

 

 

2.  Problem definition 
 

2.1  The VDSOPT  problem 
 

We first briefly present the VDSOPT algorithm (described in [CoCh91]). 

We first define the VDS scheduling problem. 

A virtual distributed system (VDS) is a distributed memory multiprocessor architecture with a non   
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limited number of identical processors and a complete communication network between these 

processors, so that each processor is directly connected to each other. 

 

A VDS scheduling problem is specified by the four parameters (I, U, p, c). 

 

- I={1, 2, …, n} is a set of n tasks. The processing time of task i is pi. 

- G=(I,U) is a directed acyclic graph (DAG) that models the precedence constraints. To each arc 

(i,j) is associated a positive communication time ci,j, representing the communication delay if i 

and j are executed on different processors (if i and j are executed on the same processor, there 

is no need for a communication, so there is no communication delay). 

 

A task is indivisible, starts when all the pieces of informations it needs from its predecessors are 

available to it, and gives all the informations needed by its successors at the end of its execution. 

 

In the following, we will denote PRED(i) (respectively SUCC(i)) the set of immediate predecessors 

(resp. successors) of task i in G. 

 

Task duplication is allowed, that is several instances of the same task may be executed on different 

processors. We will denote ik the k
th
 instance of task i. Figure 1 presents an example where duplication 

allows for a better schedule. On this figure, the values above the nodes are the processing times of the 

tasks, and the values above or below the edges are the communication delays. 

Example 1 : 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A schedule S of a VDS scheduling problem is then a triple (F, t, π), where 

 

- F(i), i ∈ I is the positive number of copies of task i. 

- t(ik) is the starting time of copy ik of task i. 

- π(ik) is the processor assigned to copy ik of task i. 
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Figure 1. Example of a graph with its optimal schedules:  

the value above each node i of the graph is the processing time pi,  

the value above each arc (i,j) of the graph is the communication delay ci,j. 
 



 

A schedule S must also satisfy the following conditions: 

 

- At least one copy of each task is processed. 

- At any time, a processor executes at most one copy. 

- If (i,j) is an arc of G, then for any copy jl of task j, there must exist at least one copy ik of task i 

such that 

 

t(jl) ≥ t(ik) + pi  if π(jl) = π(ik) 

         t(jl) ≥ t(ik) + pi + ci,j   if π(jl) ≠ π(ik) 

 

If, in a schedule S, ik and jl satisfy the two above inequalities, we will say that the Generalized 

Precedence Constraint is true for the two copies (in short, that GPC(ik,jl) is true). This Generalized 

Precedence Constraint means that a task needs its informations from one copy only of each one of its 

predecessors. 

 

Let C(ik) denote the completion time of copy ik of task i. We then wish to minimize the makespan of 

the schedule, that is, the maximum task completion time Cmax = maxi ≤n, k ≤ F(i) C(ik). 

 

 

2.2  The VDSOPT algorithm 
 

The VDSOPT algorithm is a polynomial algorithm that builds an optimal solution to this VDS 

scheduling problem, if the following condition H holds: 

 

      ∀ i ∈ G, ming ∈ PRED(i)  pg ≥ maxh ∈ PRED(i)-{g} ch,i 

 

Basically, the condition H states that the processing times are superior or equal to the communication 

delays. Note that if condition H is not verified, then the VDS scheduling problem is NP-hard in most 

cases.  

 

This algorithm may be considered as an extension of the Critical Path Method (C.P.M). It works in 

two steps. 

 

First is a procedure VDSLWB that computes lower bounds of the starting times of any copy of each 

task. The second step is the procedure VDSSOL which uses a critical rooted tree to build up a 

schedule in which any copy of a task starts at its lower bound. 

 

Procedure VDSLWB can be stated as follows : 
 

For any task i such that PRED(i)=∅, let its lower bound bi be zero; 

 

While there is a task i which has not been assigned a lower bound bi and whose predecessors in  

             PRED(i) all have lower bounds assigned do 

      

Define 

C = maxk ∈ PRED(i) (bk+pk+ck,i) 

      

             Let s be such that bs+ps+cs,i = C 

 

             Define the lower bound 

                  bi = max ( bs+ps,maxk   ∈ PRED(i)-{s}(bk+pk+ck,i)) 

 

       end while  

 



 

Example 2 :  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 presents an example of task graph. The earliest execution dates computed by VDSLWB are 

given in Figure 3. 

 

 

 

 

 task i : 1 2 3 4 5 6 7 8 9 

 

lower bound bi : 0 0 4 4 3 7 6 6 11 

 

 

 

Figure 3. The earliest execution dates of tasks from Figure 2. 

 

 

Following C.P.M. terminology, we define an arc (i,j) of U to be critical if bi+pi+ci,j > bj. From this 

definition, it is clear that if (i,j) is a critical arc, then in any earliest schedule every copy of task j must 

be preceded by a copy of task i executed on the same processor. 

 

A critical sequence of the precedence graph is a path such that all of its arcs are critical and it is not a 

proper subpath of a critical sequence. The critical graph of the VDS scheduling problem is the 

subgraph of G induced by the critical arcs. The critical graph is always a forest, thus making the search 

of all critical sequences easy. 

 

Procedure VDSSOL, the second step of the algorithm, can then be stated as follows : 

 

� Assign each critical sequence of the critical graph to a distinct processor : one copy of 

each task belonging to a critical sequence must be executed on the processor assigned to 

this critical sequence; 

 

� Execute each copy ik of each task i at its lower bound bi. 

 

3 

 

Figure 2. Example of a graph with communication delays:  

the value above each node i of the graph is the processing time pi,  

the value above each arc (i,j) of the graph is the communication delay ci,j. 
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Figure 4 presents the critical subgraph extracted from figure 2 using the results of figure 3. The 

optimal schedule of this graph is shown in figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Critical graph extracted from figure 2. 

The critical sequences are (1,3,7), (1,4,8), (2,5) and (6,9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The earliest schedule of copies of the tasks of figure 2. 

One processor is assigned to each critical sequence.} 

 

 

 

The overall complexity of the whole algorithm is O(n
2
). Its proof can be found in [CoCh91].  

 

The number of executed copies of a task is equal to the number of critical sequences the task belongs 

to. Note also that the algorithm does not necessarily minimize the number of processors used. 

 

Finally, a more complex version of this algorithm is presented in [CoNa99b]. It solves the problem of 

scheduling tasks with communication delays on a multi-levels virtual distributed system. 
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3. The non deterministic problem 
 

We now extend the above problem and suppose that the processing times of all tasks of graph G are 

now random, independent variables. We also suppose that the value pi of task i takes a finite number 

of different values {pi
a
,  pi

b
, pi

c
,…}, with a known probability for each possible value pi

u
. 

 

Note that the the new condition (H) becomes then 

 

∀ i ∈ I, min{ pg
u
 | g ∈ PRED(i), pg

u
 ∈ {pg

a
,  pg

b
, pg

c
,…} } ≥ max {cg,j | g ∈ PRED(i)}  

 

that is, the communication times are smaller than or equal to the smallest processing times. 

 

We begin with a few definitions. 

 

We call pre-scheduling a partial solution that, to any task graph G, 

- for each task, states the number of copies to be executed on VDS ; 

- for each copy, states which processor will execute it; 

- for each processor, states in which order the copies will be processed. 

 

Let X be a vector (p1
u
, p2

v
, …, pn

z
) of actual processing times (remember that n is the number of tasks 

in G). Thus a given X defines an instance of a VDS scheduling problem. 

 

Let now E* be the set of all possible cases of X, i.e. E*={X1, X2, …, XN}. N is finite because there is 

only a limited number of cases. 

Let αi be the probability of  X being Xi, i.e. αi = P(X = Xi). 

Let avg(X) be the average vector, i.e. avg(X) = ∑i=1,n (αiXi).  

 

Lemma 1 :  we have   avg(X) = ( avg(p1), avg(p2), … avg(pn))   

                     where  { pi  ,  1 ≤ i ≤ n }  is the set of  tasks processing times. 

 

One can note that this average vector avg(X) does not always belong to E*. 

So let E be the set of all possible Xi with the average vector added, i.e. E = E* ∪ {avg(X)}. 

 

Example 3 : The next figure presents an example of a random task graph with 3 tasks, we assume that 

the task lengths are equiprobable, with independence between task length random variables. 
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We have  : 

      E* = {(1,2,5), (1,2,7), (1,6,5), (1,6,7), {(9,2,5), (9,2,7), (9,6,5), (9,6,7) }      
 

       avg(X) = ( (1+9)/2 , (2+6)/2 , (5+7)/2 ) = (5, 4, 6)  
  

      E =  E* ∪ {(5, 4, 6)} = {(1,2,5), (1,2,7), (1,6,5), (1,6,7), {(9,2,5), (9,2,7), (9,6,5), (9,6,7), (5, 4, 6)} 
 

 

3.1 Building a pre-scheduling 
 

We denote AX the pre-scheduling that results from the application of the VDSOPT algorithm to an 

instance X of the new problem. This pre-scheduling uses the solution of the VDSOPT algorithm 

applied to X in the following way : 

- for each task, the number of copies to be executed on VDS is the number computed by 

VDSOPT, 
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- for each copy, the processor that will execute it is the processor allocated by VDSOPT, 

- for each processor, the order of the copies strictly follows the order of these copies in the 

critical sequence allocated to this processor. 

 

Note that because all the copies to be executed on a given processor belong to the same critical 

sequence in the solution computed by VDSOPT, the resulting pre-scheduling may always be executed. 

The reason is that no pre-scheduling built this way may have one copy of a task to be executed before 

any of its ancestors, direct or not, in the task graph  

 

Now, let TY(AX) be the optimal makespan of vector Y using the pre-scheduling AX. That is, TY(AX) is 

the makespan of the optimal solution build using the AX pre-scheduling when the real vector of 

processing times is in fact Y. Note that the optimal solution build using the AX pre-scheduling may 

easily be determined for each Y by simply executing each copy as soon as possible once the durations 

of its predecessors are known. Finally, let avg(T(AX)) be the average makespan of all possible vectors 

of E* using the pre-scheduling AX, ie. avg(T(AX)) = ∑i=1,N (αi   .TXi(AX)) 

 

 

3.2  Average makespan of any pre-scheduling 
 

 

We first try to see if it is possible to compute the average performance of any pre-scheduling. 

 

Theorem 1 : 

 

If condition (H) is verified, then for each vector Y of  E, the optimal makespan of the average 

vector avg(X) using the pre-scheduling AY is not greater than the average of all possible 

optimal executions using AY, i.e. 

 

∀ Y ∈ E, we have Tavg(X)(AY) ≤ avg(T(AY)) 

 

Thus, for each pre-scheduling we got using the VDSOPT algorithm, it is possible to compute a lower 

bound of its average makespan. This lower bound is computed using the pre-scheduling with the 

average vector avg(X) as real vector. 

 

Basically, this result states, that, for DAG with communication delays, the classical method of using 

the average task graph to estimate the average performance of any pre-scheduling yields a result that is 

never pessimistic, and tends to be too optimistic.  

 

 

3.3  Bounding the average makespan of optimal pre-schedulings 
 
Let Z be a vector of E, that gives the best pre-scheduling, i.e. Z is such that avg(T(AZ)) is minimal. 

 

First note that finding this Z, or any best pre-scheduling for that matter, is a very difficult problem. 

This is because if any algorithm could find it efficiently for any DAG with communication delays, it 

also could be used to find the best pre-scheduling for any DAG without communication delays, a 

problem that is itself known to be very difficult. 

 

Now let us state our second result. 

 

Theorem 2 : 
 

If condition (H) is verified, then we have 

 

Tavg(X)(Aavg(X)) ≤ avg(T(AZ)) ≤ avg(T(Aavg(X))) 

 



 

In other words : 

 

- the average makespan of the best pre-scheduling is not inferior to the makespan of the pre-

scheduling build by VDSOPT using the average vector avg(X), when the real vector is the 

average vector avg(X), 

- this average makespan of the best pre-scheduling is not greater than the average makespan of  

the pre-scheduling build using avg(X). 

 

Note that : 

� Avg(X) can be easily computed (see lemma 1) 

� Tavg(X)(Aavg(X)) can efficiently be computed by applying VDSOPT algorithm on avg(X), thus 

giving a lower bound of the best pre-scheduling with O(n
2
) complexity (c.f. 2.2 ). 

 

Again , this results means that, for DAG with communication delays, the classical method of using the 

average DAG as a basis for pre-scheduling, will give an estimate of the average performance of the 

best pre-scheduling that is never pessimistic, and tends to be too optimistic. 

   

 

4. Conclusions 
 
In this paper, we considered the problem of scheduling tasks with fixed small communications delays 

on a virtual distributed memory multiprocessor when the tasks execution times are random. This 

problem extends the classical PERT scheduling problem with random execution times and no 

communications. We first presented how to efficiently build pre-schedulings for this problem, using 

the optimal VDSOPT scheduling algorithm for deterministic VDS scheduling problems. We then 

computed a lower bound of the average makespan of a given pre-scheduling. We finally proposed a 

lower and an upper bound of the execution time of the best pre-scheduling. The lower bound is 

efficiently computed by using the VDSOPT algorithm on the average vector avg(X). The upper bound 

we propose is the average execution time of  the pre-scheduling computed by VDSOPT using avg(X). 

It is hard to compute however, and finding a good upper bound is still an open problem. 
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