
Paper ID=36

1

ABSTRACT— Because fault failures tend to affect whole

areas, in some cases, and not only individual computers, we
propose a new, efficient scheduling algorithm for problems in
which tasks with precedence constraints and communication
delays have to be scheduled on a virtual heterogeneous
distributed multi areas system subject to the possibility of one
complete area failure. Based on an extension of the Critical-
Path Method CPM/PERT, our algorithm combines an optimal
schedule when there is no failures, with some tasks duplication
to provide fault-tolerance in the case of the failure of one area.
Backup copies are not established for tasks that have already
more than one original copy in different areas. The result is a
schedule in polynomial time that is optimal when there is no
area failure, and is a good reliable schedule in the case of any
one area failure. We finally do some numerical experiments in
which we use our algorithm on several semi-random DAGs and
compare the optimal solutions with the reliable solutions found
by this algorithm.

KEYWORDS— DAG, scheduling with communication,
heterogeneous systems, fault tolerance, catastrophic crash, area
failure, reliable applications.

I. INTRODUCTION

 Efficiently using heterogeneous systems is a hard
problem, because the general problem of optimally
scheduling tasks is NP-complete, even when there are no
communication delays [8, 10]. When the application tasks
can be represented by Directed Acyclic Graphs (DAGs),
many static algorithms for scheduling DAGs in meta-
computing systems are described in [1], [4], [10], [19].
Reliable execution of a set of tasks is usually achieved by
task duplication and backup copies [3], [9], [15], [16].
 A very classical and useful tool to study static scheduling
problems with DAG is the Critical Path Method (also known
as CPM, or PERT method, or CPM/PERT) [2]. Using a
relaxation of the constraint on the number of available
processors, this method gives results such as a lower bound
on the execution time (or makespan) of the application and
lower bounds on the execution dates of all tasks of the DAG.
Because of the relaxation, tasks can be executed as soon as
possible. Improvements and limits of this method to
distributed systems with communications delays may be
found in [4], [5], [11], for example. The study given in [6]
presents the problem of scheduling the tasks of a DAG on
the servers of an heterogeneous system. There, the
relaxation used in CPM/PERT was replaced by the dual
relaxation that each server has no constraint on the number
of tasks it can simultaneously process. That is, each server
can simultaneously process a non limited number of tasks
without loss of performances. Our goal was to compute a
lower bound on the execution time of a realistic solution,

Moustafa NAKECHBANDI and Jean-Yves COLIN are from LITIS
Lab. of Le Havre University, 5, rue Philippe Lebon, BP 540, 76058, Le
Havre cedex, France.
e-mail: {moustafa.nakechbandi, jean-yves.colin}@univ-lehavre.fr

and compute lower bounds on the execution dates of all
tasks of the DAG. In [12], [13], the authors suppose that one
server (and at most one) could suffer from a crash fault. The
algorithm presented there improved on the one presented in
[6] by adding backup copies to the optimal solution build.
 However, because heterogeneous systems become
geographically larger and larger, they tend to be more
influenced by failures that concern whole regions or areas.
The failure of a simple DNS server, or an electric shortage
affecting an city or region, or even a hacker attack that
targets a whole country [18], is sufficient to temporarily
render useless all the computing resources of an area. In this
paper, we propose an efficient scheduling algorithm for
problems in which tasks with precedence constraints and
communication delays have to be scheduled on an virtual
heterogeneous distributed multi-areas system subject to the
possibility of one complete area failure. Based on an
extension of the Critical-Path Method CPM/PERT, our
algorithm combines an optimal schedule with some
additional tasks duplication, to provide fault-tolerance. The
result is a schedule in polynomial time that is optimal when
there is no area failure, and is a good resilient schedule in
the case of one area failure.
 The rest of this paper is divided into four main parts. In
the first one, we present the problem, and in the second one,
we present our new algorithm. In the third part, we make
some numerical experiments using randomly generated tasks
graphs, comparing the optimal solutions with the resilient
solutions found by this algorithm. Finally, in the fourth part,
we discuss the advantages and disadvantages of the
proposed solution.

II. THE CENTRAL PROBLEM

2.1 The Distributed Servers System
 We call Distributed Servers System (DSS) a virtual set
of geographically distributed, multi-users, heterogeneous or
not, servers. The processing time of a task on each server of
a DSS is supposedly known. It may vary from one server to
another, and some tasks may not be executed on some
servers.
 The classical CPM/PERT relaxation on the number of
processors, is replaced in the DSS problem with the dual
relaxation that each server has no constraint on the number
of tasks it can simultaneously process. Thus we suppose that
the concurrent executions of some tasks of the application
on a server have a negligible effect on the processing time of
any other task of the application on the same server.
 The transmission delay of a result between two tasks
depends on the tasks and on their respective servers. The
communication delay between two tasks executed on the
same server is supposed equal to 0.

Area Failures and Reliable Distributed Applications

 Moustafa NAKECHBANDI, Jean-Yves COLIN

Paper ID=36

2

Figure 1: Example of Distributed Servers System with the list of the
executable services for each server.

CAN(*) : Campus Area Network.

In Figure 1, if we suppose that the CAN has a speed 1, the
LAN 2 has a speed 2 and the LAN 1 has a speed 3, the
following matrix gives the communication costs between the
servers for one unit of data:

Network delay
between σi→ σj

Server
σ1

Server
σ2

Server
σ3

Server
σ4

Server σ1 0 1 3 3

Server σ2 1 0 3 3

Server σ3 3 3 0 2

Server σ4 3 3 2 0

Table 1: Cost communication between servers (distance σr → σp)

Thus, the total communication delay between two tasks is
the amount of data from the first task to the second one, time
the speed cost between their servers.
 A DSS itself may be divide into a set of areas, that will
be defined and used later, but that has no effects during the
normal processing of an application. In Figure 1, for
example, there are two areas, Area 1 and Area 2.

2.2 Directed Acyclic Graph
 An application is decomposed into a set of indivisible
tasks that have to be processed. A task may need data or
results from other tasks to fulfil its function and then send its
results to other tasks. The transfers of data between the tasks
introduce dependencies between them. The resulting
dependencies form a DAG.
 The central scheduling problem P on a Distributed
Server System, is represented therefore by the following
parameters:
• a set of servers, noted Σ = {σ1, ..., σs}, interconnected by a

network,
• a set of the tasks of the application, noted I = {1,..., n}, to

be executed on Σ. The execution of task i, i ∈ I, on server
σr, σr ∈ Σ, is noted i/σr. The subset of the servers able to
process task i is noted Σi, and may be different from Σ,

• the processing times of each task i on a server σr is a

positive value noted
ri σπ / . The set of processing times of

a given task i on all servers of Σ is noted Πi(Σ).

ri σπ / = ∞ means that the task i cannot be executed by the

server σr.
• a set of the transmissions between the tasks of the

application, noted U. The transmission of a result of an
task i, i ∈ I, toward a task j, j ∈ I, is noted (i, j).

• The real communication delay, noted
pr jic σσ /, / , of the

transmission of the data from i to j if task i is processed by
server σr and task j is processed by server σp is a positive
value that is in fact the data volume of (i, j) multiplied by
the communication cost between the two servers.

• The set of all possible communication delays of the
transmission of the result of task i, toward task j is noted
∆i,j(Σ). Note that a zero in ∆i,j(Σ) mean that i and j are on

the same server, i.e.
pr jic σσ /, / = 0 ⇒ σr = σp. And

pr jic σσ /, / = ∞ means that either task i cannot be executed

by server σr, or task j cannot be executed by server σp, or
both.

 Let Π (Σ) = U
Ii∈

Πi (Σ) be the set of all processing

times of the tasks of P on Σ.

 Let ∆ (Σ) = U
Uji ∈),(

∆i,j (Σ) be the set of all

communication delays of transmissions (i, j) on Σ.
 The central scheduling problem P on a distributed
servers system DSS can be modelled by a multi-valued
DAG G = { I, U, Π(Σ), ∆(Σ)}. In this case we note P={G,
Σ}. Figure 2 presents an example of DAG.

Figure 2 : Example of DAG

n.a.= not allowed, i.e. cannot execute on this server

 In this example there are 9 tasks. The label on each task
is its processing cost on the 4 servers. For example the label
Π6 = (15, ∞, 12, 15) on task 6 means that the processing
time of task 6 on server σ1 (respectively σ2, σ3, σ4) is 15
(resp. ∞, 12, 15). The label on an arc (i, j) is the data volume
from i to j. For example the data volume communicated by
task 1 to task 3 is 2. If task 1 is executed on server σ1 and
task 3 is executed on server σ2, the communication between
tasks 1 and 3 noted c1/σ1, 3/σ2 = 1*2 = 2, because the cost
communication between σ1 and σ2 is 1. Also we can see
that if task 1 is processed on server σ1 and task 3 is
processed on server σ4 , then c1/σ1, 2/σ2 = 3∗ 2 = 6.

2.3. Definition of a feasible solution
 We note PRED(i), the set of the predecessors of task i in

G: { }),(et /)PRED(UikIkki ∈∈=

 And we note SUCC(i), the set of the successors of task i

in G: { }),(et /)SUCC(UjiIjji ∈∈=

 A feasible solution S for the problem P is a subset of
executions { i/σr , i∈I } with the following properties:
• each task i of the application is executed at least once on

at least one server σr of Σi,

Possible Tasks

task 1
task 2
task 3
task 4
task 5
task 6
task 7
task 8

SERVER σ1 SERVER σ2

 Possible Tasks

task 1
task 2
task 3
task 4
task 5
task 7
task 8
task 9

Possible Tasks

task 1
task 2
task 3
task 4
task 5
task 6

 SERVER σ3 SERVER σ4

Possible Tasks

task 1
task 2
task 3
task 4
task 5
task 6
task 7
task 8
task 9

CAN (*)

LAN 1

LAN 2

Area 1

Area 2

Paper ID=36

3

• to each task i of the application executed by a server σr

of Σi, is associated one positive execution date
rit σ/ ,

• for each execution of a task i on a server σr, such that
PRED(i) ≠ ∅, there is at least an execution of a task k, k
∈PRED(i), on a server σp, σp ∈ Σκ, that can transmit its

result to server σr before the execution date
rit σ/ .

 The last condition, also known as the Generalized
Precedence Constraint (GPC) [5], can be expressed more
formally as:

++≥Σ∈∃∈∀

≥
∈∀

rpppr

r

ikkkikp

i

r cttik

t
Si

σσσσσ

σ

πσ
σ

 /, / / //

/

/),PRED(

0
/

else

)PRED(if ∅=i

 It means that if a communication must be done between
two scheduled tasks, there is at least one execution of the
first task on a server with enough delay between the end of
this task and the beginning of the second one for the
communication to take place. A feasible solution S for the
problem P is therefore a set of executions i/σr of all i tasks, i

∈ I, scheduled at their dates
rit σ/ , and verifying the

Generalised Precedence Constraints GPC. Note that, in a
feasible solution, several servers may simultaneously or not
execute the same task. This may be useful to generate less
communications. All the executed tasks in this feasible
solution, however, must respect the Generalized
Dependence Constraints.

2.4. Optimality Condition
 Let T be the total processing time of an application (also
known as the makespan of the application) in a
feasible solution S, with T defined as:)(max // rr

r

ii
Si/

tT σσ
σ

π+=
∈

 A feasible solution S* of the problem P modelled by a
DAG G = { I, U, Π(Σ), ∆(Σ)} is optimal if its total
processing time T* is minimal. That is, it does not exist any
feasible solution S with a total processing time T such that T
< T*.

2.5. Area Failure
 Finally, we now consider a DSS with possibilities of area
failures. We suppose that the DSS is composed of a set of
areas, noted A={Σ1, …, Σz}. Each area Σi is a subset of
servers of Σ. Each server belongs to one and only one area.
For example in fig.1 we have 2 areas : Area1 =
Σ1={σ1, σ2} and Area2 = Σ2 ={σ3, σ4 }.
 One “area failure” of an area means that all servers of
this area are unavailable. In our problem, only one area
failure at most can occur. We call “failed area” (FA) the
area, in which the area failure occurs, if it occurs. To
simplify, we suppose that a failed area stay in this state until
the end of the execution of the application.
 A solution is “one area failure tolerant” or 1FA tolerant
if at least one copy of each task of the graph is executed on
at least one server outside of the failed area, and the solution
is feasible. Note that, for at least one solution to be feasible
if there is one area failure, it is obvious that all tasks of the
application must be able to be executed on at least two
servers in different areas.

III. THE DSS_1FA ALGORITHM

 The algorithm proposed here, named DSS_1FA, has two
phases: the first one is for the scheduling of original copies
where we use the DSS-OPT algorithm [6] and the second
one is for adding and scheduling additional backups copies
when necessary.

3.1. Scheduling the original copies
 We schedule original copies of tasks in our algorithm
with the DSS-OPT algorithm [6]. The DSS-OPT algorithm
is an extension of CPM/PERT algorithms type to the
distributed servers problem. In its first phase, it computes
the earliest feasible execution date of each task on every
server, and in its second phase it builds a feasible solution
(without server fault) starting from the end of the graph with
the help of the earliest dates computed in the first phase.
 Let P be a DSS scheduling problem, and let G = { I, U,
Π(Σ), ∆(Σ)} be its DAG.
 One can first note that there is an optimal trivial solution
to this DSS scheduling problem. In this trivial solution, all
possible tasks are executed on all possible servers, as soon
as possible, and their results are then broadcasted to all
others servers. This is an obvious waste of processing power
and communication resources, however, and something as
optimal, but less wasteful in terms of used resources, is
usually needed.
 The first phase of the DSS_OPT routine, DSS_LWB(),
goes from the initial tasks to the final ones, computing along

the way the earliest feasible execution dates
r / ib σ and

earliest end date r / ir σ , for all possible executions i/σr of
each task i of problem P.
 The second phase of the DSS_OPT routine determines,
for every task i that does not have any successor in G, i.e.
task i is a “leaf” or final task, the execution i/σr ending at the

earliest possible date r / ir σ . If several executions of task i

end at the same smallest date
r / ib σ , one is chosen,

arbitrarily or using other criteria of convenience, and kept in
the solution. Then, for each kept execution i/σr that has at
least one predecessor in the application, the subset Li of the
executions of its predecessors that satisfy GPC(i/σr) is
established. This subset of executions of predecessors of i
contains at least an execution of each of its predecessors in
G. One execution k/σp of every predecessor task k of task i
is chosen in the subset, arbitrarily or using other criteria of
convenience, and kept in the solution. It is executed at its

earliest possible date
p / kb σ . The examination of the

predecessors is pursued in a recursive manner until the
studied tasks do not present any predecessors in G.

3.2. Adding backup copies
 The ADD_BACKUP_COPIES routine starts from tasks
without any predecessors, similarly to DSS_LWB(), and
proceed from there to the end of the DAG. First, if there is
currently only one copy of a given task, it determines what
is the worst possible delay it may encounter if a failure
occurs on another server, while satisfying its GPC. It also
determines the fastest server (not considering the server
executing the only current copy of this task in the current
solution) able to execute this task, and adds a backup copy
on this server to the solution, again considering the worst

Paper ID=36

4

possible delay resulting from this failure, while satisfying
the GPC of this copy. Else the task has already several
copies in the optimal solution, and the routine determines for
each original copy of this task, what is the worst possible
delay it may encounter if a failure occurs on another server,
while satisfying its GPC.

3.3. DSS_1_AREA_FAILURE algorithm
 The complete DSS_1_AREA_FAILURE algorithm is
the following:
Input: G = { I, U, Π(Σ), ∆(Σ)}
Output: A feasible solution with backup copies
DSS_1FA ()
 DSS_OPT() // first phase
 ADD_BACKUP_COPIES_1FA() // second phase
end DSS_1FA
DSS_OPT()
 DSS_LWB ()

)(minmax /
)(SUCC/ r

ir
i

ii
rT σσ Σ∈∀∅=∀

=

 for all tasks i such that SUCC(i) = ∅ do

 iL ← { i/σr / σr ∈ Σι and Tr
ri ≤σ/ }

 i/σr ← keepOnefrom(iL)

 schedule (i/σr)
 end for
end DSS_OPT
DSS_LWB()
 for each task i where PRED(i) = ∅ do
 for each server σr such that σr ∈ Σi do

 0/ ←
rib σ

rr iir σ/ / πσ ←

 end for
 mark (i)
 end for
 while there is a non marked task i such that
 all its predecessors k in G are marked do
 for each server σr such that σr ∈ Σi do

))(min(max /,///
)(PRED

/ rppp
kp

r ikkk
ik

i cbb σσσσ
σ

σ π ++←
Σ∈∀∈∀

rrr iii br σσσ π /// +←

 end for
 mark (i)
 end while
end DSS_LWB
schedule(i/σσσσr)

 execute the task i at the date
rib σ/ on the server σr

 if PRED(i) ≠ ∅ then
 for each task k such that k ∈ PRED(i) do

 ri
kL σ/

← { k/σq / σp ∈ Σκ and

rrppp iikkk bcb σσσσσ π //,/// ≤++ }

 k/σq ← keepOneFrom(ri
kL σ/

)

 schedule (k/σq)
 end for
 end if
end schedule
keepOneFrom(Li)
 return an execution i/σr of task i in the list of the
 executions Li.
end keepOneFrom.

ADD_BACKUP_COPIES()
 for each task i such that PRED(i) = ∅ do
 if i has only one copy scheduled
 or all copies of i are on servers in the same area

 then
 Let σi be the server executing a copy of i
 Let αi be the area such that σi ∈ αi.
 // compute one backup on the fastest server left
 // outside the area αi of σi, if αi is the failed area
 Let σ r ∉ αi be the fastest server able to execute task i
 Execute a new backup copy of i on σ r at date 0
 end if
 mark (i)
 end for
 while there is a non marked task i such that all its
 predecessors k in G are marked do
 if i has only one copy scheduled
 or all copies of i are on servers in the same area
 then
 Let σi be the server executing the copy of i
 Let αi be the area such that σi ∈ αi.
 // First compute the delayed execution date of // task i on this
 // server, if the failure is on an another area
 find the delayed execution date of the copy of i on σ i
 taking only into account the delayed execution dates of the
 copies and backups of each predecessor of i to verify the GPC
 // Second compute one backup copy on the fastest server left
 // outside area αi, if αi is the failed area
 Let σ r ∉ αi be the fastest server able to execute i
 Execute a backup copy of i on σ r taking only into account the
 delayed execution dates of the copies and backups of each
 predecessor of i to verify the GPC
 else // i has at least two copies scheduled, on servers in separate areas.
 // compute the delayed execution date of the copy of task i on
 // each server, if the failure is on another area
 for each server σ i executing a copy of i do
 Find the delayed execution date of the copy of i on σ i taking only
 into account the delayed execution dates of the copies and
 backups of each predecessor of i to verify the GPC
 end do
 end if
 mark (i)
 end while
end ADD_BACKUP_COPIES

3.4. Numerical example:
 We consider here the problem P definite in figure 1 and
2, the DSS-OPT algorithm uses DSS_LWB to compute the
earliest possible execution date of all tasks on all possible
servers, resulting in the following values b and r (Table 2):

1 b1 r1 2 b2 r2 3 b3 r3
σ1 0 15 σ1 0 19 σ1 11 31
σσσσ2222 0 10 σσσσ2222 0 12 σ2 11 18

σ3 0 20 σ3 0 15 σ3 9 19
σσσσ4444 0 5 σ4 0 8 σσσσ4444 5 14

4 b4 r4 5 b5 r5 6 b6 r6
σ1 16 21 σσσσ1111 16 28 σ1 20 35
σσσσ2222 12 18 σ2 12 32 σ2 ∞ ∞
σ3 15 24 σ3 15 24 σ3 18 30

σ4 18 23 σ4 18 28 σσσσ4444 14 29

7 b7 r7 8 b8 r8 9 b9 r9
σσσσ1111 28 38 σ1 28 46 σ1 ∞ ∞
σ2 30 50 σσσσ2222 30 42 σσσσ2222 44 52
σ3 ∞ ∞ σ3 ∞ ∞ σ3 ∞ ∞
σ4 28 48 σ4 28 38 σ4 48 56

Table 2: The earliest possible execution date of all tasks on all possible
servers for the problem P

It then computes the smallest makespan of any solution to
the P problem :

52)56,,,52min()(minmax /
)(SUCC/

=∞∞==
Σ∈∀∅=∀

r
ir

i
ii

rT σ
σ

In our example, the task 9 does not have any successor. The
list L9 of the executions kept for this task in the solution is
reduced therefore to the execution 9/σ2 . Thus L9= {9/σ2}.
The execution of task 9 on the server σ2 is scheduled at date
44. Next, The tasks 6, 7 and 8 are the predecessors of task

Paper ID=36

5

9. For the task 6, the execution 6/σ4 may satisfy the
Generalised Precedence Constraints relative to 9/σ2.
Therefore, this execution is kept and is scheduled at date 14

(4/6 σb). For task 7, execution 7/σ1 is kept and is scheduled
at date 28…, the table 3 presents the final executions i/σr
kept by the DSS_OPT(P) algorithm, with their date of
execution, in an optimal solution S.

1/σ2 1/σ4 2/σ2 3/σ4 4/σ2 5/σ1 6/σ4 7/σ1 8/σ2 9/σ2

rib σ/
0 0 0 5 12 16 14 28 30 44

rir σ/
10 5 12 14 18 28 29 38 42 50

Table 3: final executions i/σr kept by the DSS_OPT(P) algorithm

We obtain (figure 3) the following optimal scheduling by
DSS_OPT(P) algorithm:

Figure 3: DSS_OPT algorithm scheduler

By adding backup copies using ADD_BACKUP_COPIES
we get the following fault-tolerance scheduling (Figure 4.):

Figure 4: Gantt chart given by DSS_1_AREA_FAILURE

Now we express some proprities on the results found by the
proposed algorithm.

Lemma 1: The feasible solution S calculated by the DSS_OPT
algorithm is optimal if there is no area failure.
Proof: Because all copies of tasks with at least one successor
are scheduled in S only if they ensure, directly or indirectly,
that the final copies receives their data in time in the
solution, else are not used, it follows that the global
makespan of the solution S is the maximal ending date of the
copies of the tasks without any successors.
Because only the copy with the earliest ending date of each
task without any successor, is used in the solution S, it
follows that no possible solution may execute one task

without any successor that will end at an earliest date that
the one in solution S.
Thus the feasible solution S computed by DSS_OPT is
optimal in execution time for the problem without area
failure. QED
Theorem 1: The solution calculated by DSS_1FAULT is
optimal if there is no area failure.

Proof: Because the copies in the DSS_1FAULT solution
come and only come from the DSS_OPT solution, they all
will be executed at the same dates if there is no area failure.
Because of this and of Lemme 1, it then follows that the
solution calculated by DSS_1FAULT is optimal if there is
no area failure. QED
 Also, in the final solution computed by DSS_1FA(), each
task of the DAG has at least two copies (coming from the
DSS_OPT() routine), or one copy (coming from the
DSS_OPT() routine) and one backup copy (build by the
ADD_BACKUP_COPY_1FA() routine) , always executed
on different servers.
 Furthermore, the execution date of each backup copy and
the delayed execution date of each original copy coming
from DSS_OPT is always evaluated by
ADD_BACKUP_COPIES_1FA() taking into account the
delayed execution dates of the copies and the execution
dates of the backups copies of each predecessor, using the
worst possible case of failure of a predecessor, we have:
Theorem 2: The solution calculated by DSS_1FA is feasible
if there is at most one area failure.
 Also, Let α be the area that contains the servers failures.
Because the solution S is feasible when all the servers of one
area are unavailable, this solution is also feasible if only one
or several servers of area α are unavailable, and if all servers
of all others areas are available. Thus:

Theorem 3: Let S be the solution created by DSS_1FA. This
solution S is also fault tolerant to the failure of one or
several servers, if all servers failures occur in the same area.
 The most computationally intensive part of DSS_OPT()
is the first part DSS_LWB(). In this part, for each task i, for
each server executing i, for each predecessor j of i, for each
server executing j, a small computation is done. Thus the
complexity of DSS_LWB() is Ο(n2s2), where n is the
number of tasks in P, and s is the number of servers in DSS.
Thus, the complexity of the DSS_OPT() algorithm is
Ο(n2s2).
 Similarly, in ADD_BACKUP_COPIES_1FA(), for each
task i, for each copy of task i (at most one copy per server),
for each predecessor j of i, for each copy of j (at most one
per server), one small computation is done. Thus the
complexity of ADD_BACKUP_COPIES_1FA() is bounded
by Ο(n2s2), where n is the number of tasks in P, and s is the
number of servers in DSS. Thus we have:
Theorem 4: The complexity of the DSS_1FAULT algorithm
is Ο(n2s2).

IV. NUMERICAL EXPERIMENTS

4.1 Random graph generator
 To evaluate DSS_1FA, we have compared the fault
tolerant solutions it generated on some classical problems
and DAGs to optimal solutions without fault tolerancy. In
our study a semi-random graph generator was implemented

9/σ2

5 10 12 14 16 18

1/σ2

1/σ4 3/σ4 6/σ4

2/σ2 4/σ2

5/σ1 7/σ1

8/σ2

28 30 38 42 52 0

σ1

σ2

σ3

σ4

t 44

Task 1 executed
on server σ2

Communication time
Between 6, 9

Task 1 duplicated and
executed on serverσ2

σ1

σ2

σ

σ4

 t
5 10 12 14 16 18 28 30 38 42 52 0 44

9/σ2

1/σ2

1/σ4 3/σ4 6/σ4

2/σ2 4/σ2

5/σ1 7/σ1

8/σ2

3B/σ2

5 B/σ4 2B/σ3 4 B/σ3 7 B/σ4

8 B/σ4

9 B/σ1

6 B/σ1

Backup copies Original copies

Paper ID=36

6

to generate weighted application DAGs with various
characteristics. This framework first executes the random
graph generator program to construct the application DAGs,
which is followed by the execution of the our scheduling
algorithms to generate output schedules. We consider two
kinds of graphs. The first one is a regular simple two-
dimensional grid DAG (see Figure 5. a.), exhibited by the
numerical applications, with lot of parallelism and very local
communications. The second is the “butterfly” DAG (see
Figure 5. b.) present in applications such as the FFT or
shuffle algorithms, again with lot of parallelism, but a more
complex communication pattern.
 The servers performances are independent random
values for each task of the DAG, and so are the
communication delays. The processing time of a task is a
random value generated between 10 and 30. The
communication delay between the tasks is also a random
value generated between 1 and 10.

a. 2-Dimensional
grid DAGs

(3 lines, 5 columns)

b. 3-dimensional butterfly DAGs

Figure 5: Two different kind of graphs

4.2. Performance Results
 In Figure 6 the DAG used is the 2-Dimensional grid
DAGs. This kind of graph needs two parameters: the
number of lines n and the number of columns m.. Thus a
nm-grid graph has n*m vertices. Here the chosen parameters
are: (20,15), (20,20), (25,25), (30,25), (30,30), and (40,30),
which correspond, respectively to 300, 400, 625, 750, 900,
and 1200 tasks.
 The Figure 7 uses the butterfly DAGs. This kind of
graph needs only one parameters: the butterfly degree n. An
n-dimensional butterfly graph has 2n(n+1) vertices. The
chosen degrees in this numerical tests are: 4, 5, 6, 7, and 8,
which correspond, respectively to 80, 192, 448, 1024, and
2304 tasks.
 In all our simulations, we fixed the number of servers to
12 and the number of areas to 3 and each makespan average
is computed over 20 random DAGs.

Figure 6 : Makespan average for 2-Dimensional grid DAGs

Figure : Makespan average for butterfly DAGs

 In both kinds of DAGs (Figure 6 and Figure 7), it is
found that the makespan average with backup copies is
between 1.5 (usually) and 2 (at most) times the makespan
without backup copies.
 We got similar results when varying a little the number
of servers and number of areas.
 Other experiments with totally random graphs and with
fork-join graphs yielded similar results, so they are not
presented here.

V. ANALYSIS

 The model of failure, as it features at most one area
failure, may seem limiting. However, if the probability of
any area failure is very low, and the probabilities of area
failure are independent, then the probability of two failures
will be much smaller indeed.
 Also, the solution solved by this new algorithm uses the
classical CPM/PERT relaxation, namely that an unbounded
number of tasks may be processed on each server in parallel
without any effect on the tasks’ processing time, in the same
way the classical CPM/PERT method do not consider
resources constraints in order to get earliest execution dates
and detect critical paths. This relaxation is not far from the
reality, if each server is a multiprocessors architecture for
example. Or if each server is a time-shared, multi-users
system with a permanent heavy load coming from other
applications, and the tasks of an application on each server
represent a negligible additional load. Furthermore, even if
the above conditions are not met by the real distributed
system targeted, the results found by our algorithm may be
used as the first step of a list scheduling algorithm, in which
the earliest execution dates of primary and backup copies are
used as priority values to schedule these copies on the
servers of a real-life system. In the same way these
CPM/PERT results are used in some real-life systems as the
priority values of tasks in some list-scheduling algorithms
for real shared-memory or distributed architectures.
 This algorithm has two main advantages:
• when there is no area failure, the DSS_1FA’s solution is

optimal because it uses the optimal solution computed
by DSS-OPT.

• when there is one area failure, the DSS_1FA’s solution
is certain to finish correctly, because every tasks has
two or more scheduled copies on different servers in
different areas in the final solution. If more than one
area failure occur, the solution may still finish, but there
is no guaranty there.

Makespan average for butterfly DAGs

0

50

100

150

200

250

300

0 400 800 1200 1600 2000 2400

number of tasks

M
ak

es
p
an

makespan without backup

makespan with backup

Makespan average for Grid DAGs

0

500

1000

1500

2000

0 200 400 600 800 1000 1200

number of tasks

m
ak

sp
an makespan without backup

makespan with backup

Paper ID=36

7

 Note also that the solution built gives indications on the
sensibility of an application to one area failure when
compared to the solution without any area failure, because
the makespan in the presence of one area failure is a worst
case analysis.
 Not considering the areas, one can note that the solution
built has fault tolerance to the failure of one individual
server. Furthermore, the solution has fault tolerance to the
failure of several individual servers, provided that the failed
servers are all in the same area.
 Another benefit of our algorithm is in using the
following idea: suppose that we know that some servers are
very likely to have a server failure, for some reason. Even if
they are not formally in the same area, it may be worthwhile
to group them in a new specific artificial area, made of real
areas, to insure that the solution built is able to survive
failures of any number of these servers, by using backups
outside this artificial area.

VI. CONCLUSION AND FUTURE WORKS

 In this paper, we have proposed a polynomial scheduling
algorithm in which tasks with precedence constraints and
communication delays have to be scheduled on an
heterogeneous distributed system environment with one
fault hypothesis. To provide a fault-tolerant capability, we
employed primary and backup copies. But no backup copies
were established for tasks which have more than one
primary copy.
 The result have been a schedule in polynomial time that
gives earliest execution dates to copies of tasks when there
is no failure, and is a good resilient schedule in the case of
one failure. Performance evaluation on some DAGs gave an
increase in case of one server failure in makespan of 1.5 to 2
times the optimal makespan without server failure.
 The execution dates of the original and backup copies
may be used as priority values for list scheduling algorithm
in cases of real-life, limited resources, and systems.
 In our future work, we intend to study the same problem
with sub-networks failures. Also, we intend to consider the
problem of non permanent failures of servers. Finally, we
want to consider the problem of the partial failure of one
server, in which one server is not completely down but loses
the ability to execute some tasks and keeps the ability to
execute at least one other task.

REFERENCES
[1] A. H. Alhusaini, V. K. Prasanna, C.S. Raghavendra., “A Unified

Resource Scheduling Framework for Heterogeneous, Computing
Environments”, Proceedings of the 8th IEEE Heterogeneous
Computing Workshop, Puerto Rico, pp.156-166, 1999.

[2] R.E. Bellman. “Dynamic Programming”. Princeton University Press,
Princeton, New Jersey, 1957.

[3] L. Chen, A. Avizienis. “N-version programming: a fault tolerant
approach to reliability of software operation”, Proceeding of the IEEE
Fault-Tolerant Computing Symposium, pp. 3-9, 1978.

[4] J.-Y. Colin, P. Chrétienne "Scheduling with Small Communication
Delays and Task Duplication", Operations Research, vol. 39, n o 4,
680684, 1991.

[5] J.-Y. Colin , M. Nakechbandi, P. Colin, F. Guinand. “Scheduling
Tasks with communication Delays on Multi-Levels Clusters”,
PDPTA'99 : Parallel and Distributed Techniques and Application,
Las Vegas, U.S.A.. 1999.

[6] J.-Y. Colin , M. Nakechbandi, P. Colin. "A multi-valued DAG model
and an optimal PERT-like Algorithm for the Distribution of
Applications on Heterogeneous, Computing Systems", PDPTA'05,
Las Vegas, Nevada, USA, June, pp. 876-882, 2005.

[7] M.J. Flynn. “Some computer organization and their effectiveness.”,
IEEE Transactions on Computer, pp. 948-960, September, 1972.

[8] M.R. Garey and D.S. Johnson. ”Computers and Intractability, a Guide
to the Theory of NP-Completeness”, W. H. Freeman Company, San
Francisco, 1979.

[9] A. Girault, H. Kalla, and Y. Sorel. J, “A scheduling heuristics for
distributed real-time embedded systems tolerant to processor and
communication media failures”. International Journal of Production
Research, 42(14):2877-2898, 2004.

[10] Yu-Kwong Kwok, and Ishfaq Ahmad, “Static scheduling algorithms
for allocating directed task graphs to multiprocessors”, ACM
Computing Surveys (CSUR), 31 (4): 406 – 471, 1999.

[11] M. Nakechbandi, J.-Y. Colin, C. Delaruelle, “Bounding the makespan
of best pre-scheduling of task graphs with fixed communication
delays and random execution times on a virtual distributed system”,
OPODIS02, Reims; pp. 225-233, 2002.

[12] M. Nakechbandi, J.-Y. Colin, J.B. Gashumba, "An efficient fault-
tolerant scheduling algorithm for precedence constrained tasks in
heterogeneous distributed systems"; CIS2E06 International Joint
Conferences on Computer, Information, and Systems Sciences, and
Engineering, 2006. Published in : Innovations & advanced techniques
in computer & information sciences & engineering, Springer, 06-
2007, pp 301-307, 2007.

[13] M. Nakechbandi, J.-Y. Colin, "An Algorithm and Some Numerical
Experiments for the Scheduling of Tasks with Fault-Tolerancy
Constraints on Heterogeneous Systems" ; Workshop on Optimization
Issues in Grid and Parallel Computing Environments in HPCS.08, pp
326-332, Nicosia, Cyprus, 2008.

[14] P. Palmerini, “On performance of data mining: from algorithms to
management systems for data exploration”, PhD. Thesis: TD-2004-2,
Universit`a Ca’Foscari di Venezia, 2004.

[15] X. Qin and H. Jiang, “A Novel Fault-tolerant Scheduling Algorithm
for Precedence Constrained Tasks in Real-Time Heterogeneous
Systems” , Parallel Computing, vol. 32, no. 5-6, pp. 331-356, 2006.

[16] B. Randell, “System structure for software fault-tolerance”, IEEE
Trans. Software Eng. 1(2,) pp. 220-232, 1975.

[17] Ch. Ruffner, Pedro José Marrón, Kurt Rothermel, “An Enhanced
Application Model for Scheduling in Grid Environments”, TR-2003-
01, University of Stuttgart, Institute of Parallel and Distributed
Systems (IPVS), 2003.

[18] A. Saidane, V. Nicomette, and Y. Deswarte, "The Design of a Generic
Intrusion-TolerantI Architecture for Web Servers", IEEE Transactions
on dependable and secure computing, Vol. 6, NO. 1, January-march,
2009.

[19] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Task scheduling algorithms
for heterogeneous processors”. In 8th Heterogeneous Computing
Workshop (HCW’ 99), pp. 3–14, 1999.

AUTHOR BIOGRAPHIES

Moustafa NAKECHBANDI is Associate Professor at the
University of Le Havre, France. He received the "Doctorat de
3ème cycle" in 1979 and the "Doctorat d'Etat" in 1984, both from
Besançon University (France). His research interests are the
optimization problems relative to parallel computing and the fault-
tolerant scheduling in parallel programs.
Jean-Yves COLIN is Assistant Professor at the University of Le
Havre, France. He received a Ph.D (1989) in Computer Science
from Paris 6 University. His research interests include scheduling
in heterogeneous distributed systems, and optimization of parallel
programs.

