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ABSTRACT— Because fault failures tend to affect whole 

areas, in some cases, and not only individual computers, we 
propose a new, efficient scheduling algorithm for problems in 
which tasks with precedence constraints and communication 
delays have to be scheduled on a virtual heterogeneous 
distributed multi areas system subject to the possibility of one 
complete area failure. Based on an extension of the Critical-
Path Method CPM/PERT, our algorithm combines an optimal 
schedule when there is no failures, with some tasks duplication 
to provide fault-tolerance in the case of the failure of one area. 
Backup copies are not established for tasks that have already 
more than one original copy in different areas.  The result is a 
schedule in polynomial time that is optimal when there is no 
area failure, and is a good reliable schedule in the case of any 
one area failure. We finally do some numerical experiments in 
which we use our algorithm on several semi-random DAGs and 
compare the optimal solutions with the reliable solutions found 
by this algorithm. 
 

KEYWORDS— DAG, scheduling with communication, 
heterogeneous systems, fault tolerance, catastrophic crash, area 
failure, reliable applications. 

I. INTRODUCTION  

 Efficiently using heterogeneous systems is a hard 
problem, because the general problem of optimally 
scheduling tasks is NP-complete, even when there are no 
communication delays [8, 10]. When the application tasks 
can be represented by Directed Acyclic Graphs (DAGs), 
many static algorithms for scheduling DAGs in meta-
computing systems are described in [1], [4], [10], [19].  
Reliable execution of a set of tasks is usually achieved by 
task duplication and backup copies [3], [9], [15], [16].  
 A very classical and useful tool to study static scheduling 
problems with DAG is the Critical Path Method (also known 
as CPM, or PERT method, or CPM/PERT) [2]. Using a 
relaxation of the constraint on the number of available 
processors, this method gives results such as a lower bound 
on the execution time (or makespan) of the application and 
lower bounds on the execution dates of all tasks of the DAG. 
Because of the relaxation, tasks can be executed as soon as 
possible. Improvements and limits of this method to 
distributed systems with communications delays may be 
found in [4], [5], [11], for example. The study given in [6] 
presents the problem of scheduling the tasks of a DAG on 
the servers of an heterogeneous system. There, the 
relaxation used in CPM/PERT was replaced by the dual 
relaxation that each server has no constraint on the number 
of tasks it can simultaneously process. That is, each server 
can simultaneously process a non limited number of tasks 
without loss of performances. Our goal was to compute a 
lower bound on the execution time of a realistic solution, 
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and compute lower bounds on the execution dates of all 
tasks of the DAG. In [12], [13], the authors suppose that one 
server (and at most one) could suffer from a crash fault. The 
algorithm presented there improved on the one presented in    
[6] by adding backup copies to the optimal solution build.  
 However, because heterogeneous systems become 
geographically larger and larger, they tend to be more 
influenced by failures that concern whole regions or areas. 
The failure of a simple DNS server, or an electric shortage 
affecting an city or region, or even a hacker attack that 
targets a whole country [18], is sufficient to temporarily 
render useless all the computing resources of an area. In this 
paper, we propose an efficient scheduling algorithm for 
problems in which tasks with precedence constraints and 
communication delays have to be scheduled on an virtual 
heterogeneous distributed multi-areas system subject to the 
possibility of one complete area failure. Based on an 
extension of the Critical-Path Method CPM/PERT, our 
algorithm combines an optimal schedule with some 
additional tasks duplication, to provide fault-tolerance. The 
result is a schedule in polynomial time that is optimal when 
there is no area failure, and is a good resilient schedule in 
the case of one area failure. 
 The rest of this paper is divided into four main parts.  In 
the first one, we present the problem, and in the second one, 
we present our new algorithm. In the third part, we make 
some numerical experiments using randomly generated tasks 
graphs, comparing the optimal solutions with the resilient 
solutions found by this algorithm. Finally, in the fourth part, 
we discuss the advantages and disadvantages of the 
proposed solution. 

II.  THE CENTRAL PROBLEM 

2.1 The Distributed Servers System 
 We call Distributed Servers System (DSS) a virtual set 
of geographically distributed, multi-users, heterogeneous or 
not, servers. The processing time of a task on each server of 
a DSS is supposedly known. It may vary from one server to 
another, and some tasks may not be executed on some 
servers. 
 The classical CPM/PERT relaxation on the number of 
processors, is replaced in the DSS problem with the dual 
relaxation that each server has no constraint on the number 
of tasks it can simultaneously process. Thus we suppose that 
the concurrent executions of some tasks of the application 
on a server have a negligible effect on the processing time of 
any other task of the application on the same server. 
 The transmission delay of a result between two tasks 
depends on the tasks and on their respective servers. The 
communication delay between two tasks executed on the 
same server is supposed equal to 0. 
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Figure 1: Example of Distributed Servers System with the list of the 
executable services for each server. 

CAN(*) : Campus Area Network. 
 

In Figure 1, if we suppose that the CAN has a speed 1, the 
LAN 2 has a speed 2 and the LAN 1 has a speed 3, the 
following matrix gives the communication costs between the 
servers for one unit of data: 

Network delay  
between σi→ σj 

Server  
σ1 

Server  
σ2 

Server  
σ3 

Server  
σ4 

Server σ1 0 1 3 3 

Server σ2 1 0 3 3 

Server σ3 3 3 0 2 

Server σ4 3 3 2 0 

Table 1: Cost communication between servers (distance σr → σp  ) 
 

Thus, the total communication delay between two tasks is 
the amount of data from the first task to the second one, time 
the speed cost between their servers. 
 A DSS itself may be divide into a set of areas, that will 
be defined and used later, but that has no effects during the 
normal processing of an application. In Figure 1, for 
example, there are two areas, Area 1 and Area 2. 

2.2 Directed Acyclic Graph 
 An application is decomposed into a set of indivisible 
tasks that have to be processed. A task may need data or 
results from other tasks to fulfil its function and then send its 
results to other tasks. The transfers of data between the tasks 
introduce dependencies between them. The resulting 
dependencies form a DAG.  
 The central scheduling problem P on a Distributed 
Server System, is represented therefore by the following 
parameters:   
• a set of servers, noted Σ = {σ1, ..., σs}, interconnected by a  

network, 
• a set of the tasks of the application, noted I = {1,..., n}, to 

be executed on Σ. The execution of task i, i ∈ I, on server 
σr, σr ∈ Σ, is noted i/σr. The subset of the servers able to 
process task i is noted Σi, and may be different from Σ,  

• the processing times of each task i on a server σr is a 

positive value noted 
ri σπ   / . The set of processing times of 

a given task i on all servers of Σ is noted  Πi(Σ). 

ri σπ   / = ∞ means that the task i cannot be executed by the 

server σr. 
• a set of the transmissions between the tasks of the 

application, noted U. The transmission of a result of an 
task i, i ∈ I, toward a task j, j ∈ I, is noted (i, j).  

• The real communication delay, noted 
pr jic σσ /, / , of the 

transmission of the data from i to j if task i is processed by 
server σr and task j is processed by server σp is a positive 
value that is in fact the data volume of (i, j) multiplied by 
the communication cost between the two servers.  

• The set of all possible communication delays of the 
transmission of the result of task i, toward task j is noted 
∆i,j(Σ). Note that a zero in ∆i,j(Σ)  mean that i and j are on 

the same server, i.e. 
pr jic σσ /, / = 0 ⇒ σr  = σp.  And 

pr jic σσ /, / =  ∞ means that either task i cannot be executed 

by server σr, or task j cannot be executed by server σp, or 
both. 

 Let Π (Σ) = U
Ii∈

Πi (Σ) be the set of all processing 

times of the tasks of P on Σ.   

 Let ∆ (Σ) = U
Uji ∈),(

∆i,j (Σ) be  the set of all 

communication delays of transmissions (i, j) on Σ. 
 The central scheduling problem P on a distributed 
servers system DSS can be modelled by a multi-valued 
DAG G = { I, U, Π(Σ),  ∆(Σ)}. In this case we note  P={G, 
Σ}. Figure 2 presents an example of DAG. 

 
Figure 2 : Example of DAG   

n.a.= not allowed, i.e. cannot execute on this server  
 

 In this example there are 9 tasks. The label on each task  
is its processing cost on the 4 servers. For example the label 
Π6 = (15, ∞, 12, 15) on task 6 means that the processing 
time of task 6 on server σ1 (respectively σ2, σ3, σ4) is 15 
(resp. ∞, 12, 15). The label on an arc (i, j) is the data volume 
from i to j. For example the data volume communicated by 
task 1 to task 3 is 2. If task 1 is executed on server σ1 and 
task 3 is executed on server σ2, the communication between 
tasks 1 and 3 noted  c1/σ1, 3/σ2  = 1*2 = 2, because the cost 
communication between σ1 and σ2 is 1. Also we can see 
that if task 1 is processed on server σ1  and task 3 is 
processed on server σ4 , then c1/σ1, 2/σ2  = 3∗ 2 = 6. 

2.3. Definition of a feasible solution 
 We note PRED(i), the set of the predecessors of task i in 

G:  { } ),(et  / )PRED( UikIkki ∈∈=  

 And we note SUCC(i), the set of the successors of task i 

in G: { } ),(et  / )SUCC( UjiIjji ∈∈=  

 A feasible solution S for the problem P is a subset of 
executions { i/σr , i∈I } with the following  properties:     
• each task i of the application is executed at least once on 

at least one server σr of Σi, 

Possible Tasks 
 

task 1 
task 2 
task 3 
task 4 
task 5 
task 6 
task 7 
task 8 

 

SERVER σ1 SERVER σ2 

 Possible  Tasks 
 

task 1 
task 2 
task 3 
task 4 
task 5 
task 7 
task 8 
task 9 

Possible Tasks 
 

task 1 
task 2 
task 3 
task 4 
task 5 
task 6 

 
  

  SERVER σ3 SERVER σ4 

Possible Tasks 
 

task 1 
task 2 
task 3 
task 4 
task 5 
task 6 
task 7 
task 8 
task 9 

CAN (*) 

LAN 1  

 
LAN 2  
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Area 2 
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• to each task i of the application executed by a server σr 

of Σi, is associated one positive execution date 
rit σ/ , 

• for each execution of a task i on a server σr, such that 
PRED(i) ≠ ∅, there is at least an execution of a task k, k 
∈PRED(i), on a server σp, σp ∈ Σκ, that can transmit its 

result to server σr before the execution date 
rit σ/ .    

 The last condition, also known as the Generalized 
Precedence Constraint (GPC) [5], can be expressed more 
formally as:   
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 It means that if a communication must be done between 
two scheduled tasks, there is at least one execution of the 
first task on a server with enough delay between the end of 
this task and the beginning of the second one for the 
communication to take place.  A feasible solution S for the 
problem P is therefore a set of executions i/σr of all i tasks, i 

∈ I, scheduled at their dates 
rit σ/ , and verifying the 

Generalised Precedence Constraints GPC.  Note that, in a 
feasible solution, several servers may simultaneously or not 
execute the same task. This may be useful to generate less 
communications.   All the executed tasks in this feasible 
solution, however, must respect the Generalized 
Dependence Constraints. 

2.4. Optimality Condition  
 Let T be the total processing time of an application (also 
known as the makespan of the application) in a  
feasible solution S, with T defined as: )(max // rr

r

ii
Si/

tT σσ
σ

π+=
∈

 

 A feasible solution S* of the problem P modelled by a 
DAG G = { I, U, Π(Σ), ∆(Σ)} is optimal if its total 
processing time T* is minimal. That is, it does not exist any 
feasible solution S with a total processing time T such that T 
< T*. 

2.5. Area Failure 
 Finally, we now consider a DSS with possibilities of area 
failures.  We suppose that the DSS is composed of a set of 
areas, noted A={Σ1, …, Σz}. Each area Σi is a subset of 
servers of Σ. Each server belongs to one and only one area. 
For example in fig.1 we have 2 areas : Area1 = 
Σ1={σ1, σ2}  and Area2 = Σ2 ={σ3, σ4 }. 
 One “area failure” of an area means that all servers of 
this area are unavailable. In our problem, only one area 
failure at most can occur. We call “failed area” (FA) the 
area, in which the area failure occurs, if it occurs. To 
simplify, we suppose that a failed area stay in this state until 
the end of the execution of the application. 
 A solution is “one area failure tolerant” or 1FA tolerant 
if at least one copy of each task of the graph is executed on 
at least one server outside of the failed area, and the solution 
is feasible. Note that, for at least one solution to be feasible 
if there is one area failure, it is obvious that all tasks of the 
application must be able to be executed on at least two 
servers in different areas. 

III.  THE DSS_1FA ALGORITHM 

 The algorithm proposed here, named DSS_1FA, has two 
phases: the first one is for the scheduling of original copies 
where we use the DSS-OPT algorithm [6] and the second 
one is for adding and scheduling additional backups copies 
when necessary.  

3.1. Scheduling the original copies 
 We schedule original copies of tasks in our algorithm 
with the DSS-OPT algorithm [6]. The DSS-OPT algorithm 
is an extension of CPM/PERT algorithms type to the 
distributed servers problem. In its first phase, it computes 
the earliest feasible execution date of each task on every 
server, and in its second phase it builds a feasible solution 
(without server fault) starting from the end of the graph with 
the help of the earliest dates computed  in the first phase. 
 Let P be a DSS scheduling problem, and let G = { I, U, 
Π(Σ),  ∆(Σ)} be its DAG.  
 One can first note that there is an optimal trivial solution 
to this DSS scheduling problem. In this trivial solution, all 
possible tasks are executed on all possible servers, as soon 
as possible, and their results are then broadcasted to all 
others servers. This is an obvious waste of processing power 
and communication resources, however, and something as 
optimal, but less wasteful in terms of used resources, is 
usually needed.  
 The first phase of the DSS_OPT routine, DSS_LWB(), 
goes from the initial tasks to the final ones, computing along 

the way the earliest feasible execution dates 
r / ib σ and 

earliest end date r / ir σ ,  for all possible executions i/σr  of 
each task  i of problem P. 
 The second phase of the DSS_OPT routine determines, 
for every task i that does not have any successor in G, i.e. 
task i is a “leaf” or final task, the execution i/σr ending at the 

earliest possible date r / ir σ . If several executions of task i 

end at the same smallest date 
r / ib σ , one is chosen, 

arbitrarily or using other criteria of convenience, and kept in 
the solution. Then, for each kept execution i/σr that has at 
least one predecessor in the application, the subset Li of the 
executions of its predecessors that satisfy GPC(i/σr) is 
established. This subset of executions of predecessors of i 
contains at least an execution of each of its predecessors in 
G. One execution k/σp of every predecessor task k of task i 
is chosen in the subset, arbitrarily or using other criteria of 
convenience, and kept in the solution. It is executed at its 

earliest possible date 
p / kb σ . The examination of the 

predecessors is pursued in a recursive manner until the 
studied tasks do not present any predecessors in G.  

3.2. Adding backup copies 
 The ADD_BACKUP_COPIES routine starts from tasks 
without any predecessors, similarly to DSS_LWB(), and 
proceed from there to the end of the DAG. First, if there is 
currently only one copy of a given  task, it determines what 
is the worst possible delay it may encounter if a failure 
occurs on another server, while satisfying its GPC. It also 
determines the fastest server (not considering the server 
executing the only current copy of this task in the current 
solution) able to execute this task,  and adds a backup copy 
on this server to the solution, again considering the worst 
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possible delay resulting from this failure, while satisfying 
the GPC of this copy. Else the task has already several 
copies in the optimal solution, and the routine determines for 
each original copy of this task, what is the worst possible 
delay it may encounter if a failure occurs on another server, 
while satisfying its GPC.  

3.3. DSS_1_AREA_FAILURE algorithm 
 The complete DSS_1_AREA_FAILURE algorithm is 
the following: 
Input: G = { I, U, Π(Σ),  ∆(Σ)}  
Output: A feasible solution with backup copies  
DSS_1FA () 
  DSS_OPT()       // first phase 
  ADD_BACKUP_COPIES_1FA()    // second phase 
end  DSS_1FA 
DSS_OPT() 
 DSS_LWB ()     

 )(minmax /
)(SUCC/ r

ir
i

ii
rT σσ Σ∈∀∅=∀

=  

 for all tasks i such that SUCC(i) = ∅ do 

  iL  ← {  i/σr / σr ∈ Σι   and  Tr
ri ≤σ/ } 

     i/σr  ←  keepOnefrom( iL ) 

  schedule (i/σr) 
 end for 
end DSS_OPT 
DSS_LWB() 
 for  each task i where PRED(i) = ∅  do 
  for each server σr  such that  σr ∈ Σi  do 

   0/ ←
rib σ  

   
rr iir σ/ / πσ ←  

           end for 
  mark (i) 
       end for 
 while there is a non marked task i such that 
                   all its predecessors  k in G  are marked  do 
  for  each  server  σr  such that  σr ∈ Σi   do 

 ))(min(max /,///
)(PRED

/ rppp
kp

r ikkk
ik

i cbb σσσσ
σ

σ π ++←
Σ∈∀∈∀

 

   
rrr iii br σσσ π /// +←  

       end for 
  mark (i) 
    end while 
end DSS_LWB 
schedule(i/σσσσr) 

 execute the task i at the date 
rib σ/ on the server σr   

 if   PRED(i) ≠ ∅ then 
  for  each task  k  such that  k ∈ PRED(i)  do 

        ri
kL σ/

← { k/σq    /   σp ∈ Σκ   and   

                         
rrppp iikkk bcb σσσσσ π //,/// ≤++ } 

   k/σq ← keepOneFrom( ri
kL σ/

) 

   schedule (k/σq) 
          end for 
  end if 
end schedule 
keepOneFrom(Li) 
       return an execution i/σr of task i in the list of the 
       executions Li.   
end keepOneFrom. 
 
ADD_BACKUP_COPIES() 
 for  each task i such that PRED(i) =  ∅  do 
  if  i has only one copy scheduled  
     or all copies of i are on servers in the same area 

  then 
      Let σi  be the server executing a copy of i 
      Let αi be the area such that σi ∈ αi. 
      // compute one backup on the fastest server left 
      // outside the area αi of σi, if αi  is the failed area 
      Let σ r ∉ αi be the fastest server able to execute task i 
      Execute a new backup copy of i on σ r  at date 0 
  end if 
  mark (i) 
  end for 
 while there is a non marked task i such that all its  
                   predecessors k in G are marked  do 
  if  i has only one copy scheduled  
     or all copies of i are on servers in the same area 
  then 
   Let σi  be the server executing the copy of i 
   Let αi be the area such that σi ∈ αi. 
   // First compute the delayed execution date of // task i on this 
   // server, if the failure is on an another area 
   find the delayed execution date of the copy of i on σ i 
      taking only into account the delayed  execution dates of  the 
    copies and backups of each predecessor of i to verify the GPC 
   // Second compute one backup copy on the fastest server left 
   // outside area αi, if αi  is the failed area   
   Let σ r ∉ αi be the fastest server able to execute i 
   Execute a backup copy of i on σ r taking only  into account the 
               delayed execution dates of the copies and backups of each 
               predecessor of i to verify the GPC 
  else  // i has at least two copies scheduled, on servers in separate areas. 
  // compute the delayed execution date of the copy of task i on 
  // each server, if the failure is on another area 
   for  each server σ i executing a copy of i do 
     Find the delayed execution date of the copy of i on σ i taking only 
               into account the delayed execution dates of the copies and  
    backups of each predecessor of i to verify the GPC 
   end do  
  end if 
  mark (i) 
 end while 
end ADD_BACKUP_COPIES 

3.4. Numerical example: 
 We consider here the problem P definite in figure 1 and 
2, the DSS-OPT algorithm uses DSS_LWB to compute the 
earliest possible execution date of all tasks on all possible 
servers, resulting in the following values b and  r (Table 2): 

1 b1 r1  2 b2 r2  3 b3 r3 
σ1 0 15  σ1 0 19  σ1 11 31 
σσσσ2222 0 10  σσσσ2222 0 12  σ2 11 18 

σ3 0 20  σ3 0 15  σ3 9 19 
σσσσ4444    0 5  σ4 0 8  σσσσ4444    5 14 

           

4 b4 r4  5 b5 r5  6 b6 r6 
σ1 16 21  σσσσ1111 16 28  σ1 20 35 
σσσσ2222 12 18  σ2 12 32  σ2 ∞ ∞ 
σ3 15 24  σ3 15 24  σ3 18 30 

σ4 18 23  σ4 18 28  σσσσ4444    14 29 
           

7 b7 r7  8 b8 r8  9 b9 r9 
σσσσ1111 28 38  σ1 28 46  σ1 ∞ ∞ 
σ2 30 50  σσσσ2222 30 42  σσσσ2222 44 52 
σ3 ∞ ∞  σ3 ∞ ∞  σ3 ∞ ∞ 
σ4 28 48  σ4 28 38  σ4 48 56 

Table 2: The earliest possible execution date of all tasks on all possible 
servers  for the problem P 

 

It then computes the smallest makespan of any solution to 
the P problem : 

52)56,,,52min()(minmax /
)(SUCC/

=∞∞==
Σ∈∀∅=∀

r
ir

i
ii

rT σ
σ

 

In our example, the task 9 does not have any successor. The 
list L9 of the executions kept for this task in the solution is 
reduced therefore to the execution 9/σ2 . Thus  L9= {9/σ2}.     
The execution of task 9 on the server σ2 is scheduled at date 
44.   Next, The tasks 6, 7 and 8 are the predecessors  of task 
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9. For the task 6, the execution 6/σ4 may satisfy the 
Generalised Precedence Constraints relative to 9/σ2. 
Therefore, this execution is kept and is scheduled at date 14 

( 4/6 σb ). For task 7, execution 7/σ1  is kept and is scheduled 
at date 28…, the table 3 presents the final executions i/σr 
kept by the DSS_OPT(P) algorithm, with their date of 
execution, in an optimal solution S. 

 
 

1/σ2 1/σ4 2/σ2 3/σ4 4/σ2 5/σ1 6/σ4 7/σ1 8/σ2 9/σ2 

rib σ/  
0 0 0 5 12 16 14 28 30 44 

rir σ/  
10 5 12 14 18 28 29 38 42 50 

Table 3:  final executions i/σr kept by the DSS_OPT(P) algorithm 
 

We obtain (figure 3) the following optimal scheduling  by 
DSS_OPT(P) algorithm: 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 3: DSS_OPT algorithm scheduler 
 

By adding backup copies using ADD_BACKUP_COPIES 
we get the following fault-tolerance scheduling (Figure 4.): 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Gantt chart given by DSS_1_AREA_FAILURE 
 

Now we express some proprities on the results found by the 
proposed algorithm. 
 

Lemma 1: The feasible solution S calculated by the DSS_OPT 
algorithm is optimal if there is no area failure. 
Proof: Because all copies of tasks with at least one successor 
are scheduled in S only if they ensure, directly or indirectly, 
that the final copies receives their data in time in the 
solution, else are not used, it follows that the global 
makespan of the solution S is the maximal ending date of the 
copies of the tasks without any successors. 
Because only the copy with the earliest ending date of each 
task without any successor, is used in the solution S, it 
follows that no possible solution may execute one task 

without any successor that will end at an earliest date that 
the one in solution S. 
Thus the feasible solution S computed by DSS_OPT is 
optimal in execution time for the problem without area 
failure. QED 
Theorem 1: The solution calculated by DSS_1FAULT is 
optimal if there is no area failure. 
 

Proof: Because the copies in the DSS_1FAULT solution 
come and only come from the DSS_OPT solution, they all 
will be executed at the same dates if there is no area failure. 
Because of this and of Lemme 1, it then follows that the 
solution calculated by DSS_1FAULT is optimal if there is 
no area failure. QED 
 Also, in the final solution computed by DSS_1FA(), each 
task of the DAG has at least two copies (coming from the 
DSS_OPT() routine), or one copy  (coming from the 
DSS_OPT() routine) and one backup copy (build by the 
ADD_BACKUP_COPY_1FA() routine) , always executed 
on different servers.  
 Furthermore, the execution date of each backup copy and 
the delayed execution date of each original copy coming 
from DSS_OPT is always evaluated by 
ADD_BACKUP_COPIES_1FA() taking into account the 
delayed execution dates of the copies and the execution 
dates of the backups copies of each predecessor, using the 
worst possible case of failure of a predecessor, we have: 
Theorem 2: The solution calculated by DSS_1FA is feasible 
if there is at most one area failure. 
 Also, Let α be the area that contains the servers failures. 
Because the solution S is feasible when all the servers of one 
area are unavailable, this solution is also feasible if only one 
or several servers of area α are unavailable, and if all servers 
of all others areas are available. Thus: 

Theorem 3: Let S be the solution created by DSS_1FA. This 
solution S is also fault tolerant to the failure of one or 
several servers, if all servers failures occur in the same area. 
 The most computationally intensive part of DSS_OPT() 
is the first part DSS_LWB(). In this part, for each task i, for 
each server executing i, for each predecessor j of i, for each 
server executing j, a small computation is done. Thus the 
complexity of DSS_LWB() is Ο(n2s2), where n is the 
number of tasks in P, and s is the number of servers in DSS.   
Thus, the complexity of the DSS_OPT() algorithm is 
Ο(n2s2).  
 Similarly, in ADD_BACKUP_COPIES_1FA(), for each 
task i, for each copy of task i (at most one copy per server), 
for each predecessor j of i, for each copy of j (at most one 
per server), one small computation is done. Thus the 
complexity of ADD_BACKUP_COPIES_1FA() is bounded 
by Ο(n2s2), where n is the number of tasks in P, and s is the 
number of servers in DSS.   Thus we have: 
Theorem 4: The complexity of the DSS_1FAULT algorithm 
is Ο(n2s2).  

IV.  NUMERICAL EXPERIMENTS 

4.1 Random graph generator 
 To evaluate DSS_1FA, we have compared the fault 
tolerant solutions it generated on some classical problems 
and DAGs to optimal solutions without fault tolerancy. In 
our study a semi-random graph generator was implemented 
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to generate weighted application DAGs with various 
characteristics. This framework first executes the random 
graph generator program to construct the application DAGs, 
which is followed by the execution of the our scheduling 
algorithms to generate output schedules. We consider two 
kinds of graphs. The first one is a regular simple two-
dimensional grid DAG (see Figure 5. a.), exhibited by the 
numerical applications, with lot of parallelism and very local 
communications. The second is the “butterfly” DAG (see 
Figure 5. b.) present in applications such as the FFT or 
shuffle algorithms, again with lot of parallelism, but a more 
complex communication pattern. 
 The servers performances are independent random 
values for each task of the DAG, and so are the  
communication delays. The processing time of a task is a 
random value generated between 10 and 30. The 
communication delay between the tasks is also a random 
value generated between 1 and 10. 
 

 
 
 
 
 

 

 

 
 

a. 2-Dimensional 
grid DAGs 

(3 lines, 5 columns)  

  
b. 3-dimensional butterfly DAGs 

 

Figure 5: Two different kind of graphs 

4.2. Performance Results 
 In Figure 6 the DAG used is the 2-Dimensional grid 
DAGs. This kind of graph needs two parameters: the 
number of lines n and the number of columns m.. Thus a 
nm-grid graph has n*m vertices. Here the chosen parameters 
are: (20,15), (20,20), (25,25), (30,25), (30,30), and (40,30), 
which  correspond, respectively to 300, 400, 625, 750, 900, 
and 1200 tasks. 
  The Figure 7 uses the butterfly DAGs. This kind of 
graph needs only one parameters: the butterfly degree n. An 
n-dimensional butterfly graph has 2n(n+1) vertices. The 
chosen degrees in this numerical tests are: 4, 5, 6, 7, and 8, 
which correspond, respectively  to 80, 192, 448, 1024, and 
2304 tasks.  
 In all our simulations, we fixed the number of servers to 
12 and the number of areas to 3 and each makespan average 
is computed over 20 random DAGs.  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 6 :  Makespan average for 2-Dimensional grid DAGs 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure :  Makespan average for butterfly DAGs 
 

 In both kinds of DAGs (Figure 6 and Figure 7), it is 
found that the makespan average with backup copies is 
between 1.5 (usually) and 2 (at most) times the makespan 
without backup copies.  
 We got similar results when varying a little the number 
of servers and number of areas.  
 Other experiments with totally random graphs and with 
fork-join graphs yielded similar results, so they are not 
presented here. 

V. ANALYSIS 

 The model of failure, as it features at most one area 
failure, may seem limiting. However, if the probability of 
any area failure is very low, and the probabilities of area 
failure are independent, then the probability of two failures 
will be much smaller indeed. 
 Also, the solution solved by this new algorithm uses the 
classical CPM/PERT relaxation, namely that an unbounded 
number of tasks may be processed on each server in parallel 
without any effect on the tasks’ processing time, in the same 
way the classical CPM/PERT method do not consider 
resources constraints in order to get earliest execution dates 
and detect critical paths. This relaxation is not far from the 
reality, if each server is a multiprocessors architecture for 
example. Or if each server is a time-shared, multi-users 
system with a permanent heavy load coming from other 
applications, and the tasks of an application on each server 
represent a negligible additional load. Furthermore, even if 
the above conditions are not met by the real distributed 
system targeted, the results found by our algorithm may be 
used as the first step of a list scheduling algorithm, in which 
the earliest execution dates of primary and backup copies are 
used as priority values to schedule these copies on the 
servers of a real-life system. In the same way these 
CPM/PERT results are used in some real-life systems as the 
priority values of tasks in some list-scheduling algorithms 
for real shared-memory or distributed architectures. 
 This algorithm has two main advantages: 
• when there is no area failure, the DSS_1FA’s solution is 

optimal because it uses the optimal solution computed 
by DSS-OPT. 

• when there is one area failure, the DSS_1FA’s solution 
is certain to finish correctly, because every tasks has 
two or more scheduled copies on different servers in 
different areas in the final solution. If more than one 
area failure occur, the solution may still finish, but there 
is no guaranty there. 
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 Note also that the solution built gives indications on the 
sensibility of an application to one area failure when 
compared to the solution without any area failure, because 
the makespan in the presence of one area failure is a worst 
case analysis. 
 Not considering the areas, one can note that the solution 
built has fault tolerance to the failure of one individual 
server. Furthermore, the solution has fault tolerance to the 
failure of several individual servers, provided that the failed 
servers are all in the same area.  
 Another benefit of our algorithm is in using the 
following idea: suppose that we know that some servers are 
very likely to have a server failure, for some reason. Even if 
they are not formally in the same area, it may be worthwhile 
to group them in a new specific artificial area, made of real 
areas, to insure that the solution built is able to survive 
failures of any number of these servers, by using backups 
outside this artificial area. 

VI.  CONCLUSION AND FUTURE WORKS 

 In this paper, we have proposed a polynomial scheduling 
algorithm in which tasks with precedence constraints and 
communication delays have to be scheduled on an 
heterogeneous distributed system environment with one 
fault hypothesis.  To provide a fault-tolerant capability, we 
employed primary and backup copies.  But no backup copies 
were established for tasks which have more than one 
primary copy. 
 The result have been a schedule in polynomial time that 
gives earliest execution dates to copies of tasks when there 
is no failure, and is a good resilient schedule in the case of 
one failure. Performance evaluation on some DAGs gave an 
increase in case of one server failure in makespan of 1.5 to 2 
times the optimal makespan without server failure.  
 The execution dates of the original and backup copies 
may be used as priority values for list scheduling algorithm 
in cases of real-life, limited resources, and systems.  
 In our future work, we intend to study the same problem 
with sub-networks failures. Also, we intend to consider the 
problem of non permanent failures of servers.  Finally, we 
want to consider the problem of the partial failure of one 
server, in which one server is not completely down but loses 
the ability to execute some tasks and keeps the ability to 
execute at least one other task. 
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