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Area Failures and Reliable Distributed Applications

Moustafa NAKECHBANDI, Jean-Yves COLIN

ABSTRACT— Because fault failures tend to affect whole
areas, in some cases, and not only individual comyaus, we
propose a new, efficient scheduling algorithm for pblems in
which tasks with precedence constraints and commucation
delays have to be scheduled on a virtual heterogemes
distributed multi areas system subject to the possibility of one
complete area failure. Based on an extension of th@ritical-
Path Method CPM/PERT, our algorithm combines an optinal
schedule when there is no failures, with some taskiiplication
to provide fault-tolerance in the case of the failte of one area.
Backup copies are not established for tasks that ka already
more than one original copy in different areas. Theesult is a
schedule in polynomial time that is optimal when tkre is no
area failure, and is a good reliable schedule in thcase of any
one area failure. We finally do some numerical expaments in
which we use our algorithm on several semi-random BGs and
compare the optimal solutions with the reliable saltions found
by this algorithm.

KEYWORDS— DAG, scheduling with communication,

heterogeneous systems, fault tolerance, catastrophirash, area
failure, reliable applications.

I. INTRODUCTION

Efficiently using heterogeneous systems is a har(ﬁ
problem of optimally

problem, because the general
scheduling tasks is NP-complete, even when thezenar
communication delays [8, 10]. When the applicatiasks

can be represented by Directed Acyclic Graphs (DAGs
many static algorithms for scheduling DAGs in meta-

computing systems are described in [1], [4], [1[9].
Reliable execution of a set of tasks is usuallyiedd by
task duplication and backup copies [3], [9], [18F].

A very classical and useful tool to study statibedduling
problems with DAG is the Critical Path Method (alsmwn

and compute lower bounds on the execution dateallof
tasks of the DAG. In [12], [13], the authors supptsat one
server (and at most one) could suffer from a cfash. The
algorithm presented there improved on the one pteddn
[6] by adding backup copies to the optimal solutimiid.

However,
geographically larger and larger, they tend to berem
influenced by failures that concern whole regionsaeas.
The failure of a simple DNS server, or an elecsfiortage
affecting an city or region, or even a hacker &t#rat
targets a whole country [18], is sufficient to teargrily
render useless all the computing resources of @ &m this
paper, we propose an efficient scheduling algoritfom
problems in which tasks with precedence constraamd
communication delays have to be scheduled on anavir
heterogeneous distributed multi-areas system sulgethe
possibility of one complete area failure. Based am
extension of the Critical-Path Method CPM/PERT, our
algorithm combines an optimal schedule with some
additional tasks duplication, to provide fault-talece. The
result is a schedule in polynomial time that isimpt when
here is no area failure, and is a good resiliehiedule in
he case of one area failure.

The rest of this paper is divided into four maartp. In
the first one, we present the problem, and in gw®sd one,
we present our new algorithm. In the third part, nvake
some numerical experiments using randomly genetasic
graphs, comparing the optimal solutions with thsilient
solutions found by this algorithm. Finally, in tfaurth part,

we discuss the advantages and disadvantages of the

proposed solution.

. THE CENTRAL PROBLEM

as CPM, or PERT method, or CPM/PERT) [2]. Using a

relaxation of the constraint on the number of adé
processors, this method gives results such as erlbaund
on the execution time (or makespan) of the apjdinaand
lower bounds on the execution dates of all taskB®@DAG.
Because of the relaxation, tasks can be executsdas as

2.1 The Distributed Servers System

We call Distributed Servers System (DSS) a virtset
of geographically distributed, multi-users, hetenogous or
not, servers. The processing time of a task on saoler of

possible. Improvements and limits of this method to? DSS is supposedly known. It may vary from oneeseto

distributed systems with communications delays rbay
found in [4], [5], [11], for example. The study giv in [6]
presents the problem of scheduling the tasks ofA& D@n

another, and some tasks may not be executed on some

servers.
The classical CPM/PERT relaxation on the number of

the servers of an heterogeneous system. There, tf§Ocessors, is replaced in the DSS problem withdiral
relaxation used in CPM/PERT was replaced by thel dudelaxation that each server has no constraint emtimber

relaxation that each server has no constraint emtimber
of tasks it can simultaneously process. That isheserver
can simultaneously process a non limited numbetasis
without loss of performances. Our goal was to camp
lower bound on the execution time of a realisticigson,
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of tasks it can simultaneously process. Thus wgass that
the concurrent executions of some tasks of theicgifn
on a server have a negligible effect on the pracgssne of
any other task of the application on the same serve

The transmission delay of a result between twdstas
depends on the tasks and on their respective serVee
communication delay between two tasks executedhen t
same server is supposed equal to 0.

because heterogeneous systems become
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| Aeal » The real communication delay, notarj,aryj,ap, of the
P"SSib':lT“' F"’Ss‘b'kel“s‘ transmission of the data frointo j if taski is processed by
tas| tas| .. . e
task 2 task 2 serverg; and task is processed by servery is a positive
task 3 task 3 . . P .
tas 4 task 4 value that is in fact the data volume of (i, j) tplled by
asl asl . .
task s task 7 the communication cost between the two servers.
asl asl . . .
task 8 \__sk9 * The set of all possible communication delays of the
i transmission of the result of task i, toward tas& poted
Possible Tas! (" Possible Tas ) 4(Z). Note that a zero idj(¥X) mean thati and j are on
task 2 /_ a2 the same server, i.€G,, ,,, = 0= & = d. And
task 3 LAN 2 task 3 r P
task 4 task 4 . .
task 5 task s C o /0. = % means that either taslkcannot be executed
task 6 SERVER 03 SERVER a; tastg g, 110,
{peaz | \___tesk8 J by servera;, or taskj cannot be executed by servsy or
Figure 1: Example of Distributed Servers System with thteoli the )
executable services for each server. Let /7(2) = U /7, () be the set of all processing
CAN" : Campus Area Network. i

In Figure 1, if we suppose that the CAN has a sgedtie times of the tasks & onZ.
LAN 2 has a speed 2 and the LAN 1 has a speede3, th Let 4 (5) = U 4; (%) be
= i

: L L the set of all
following matrix gives the communication costs beén the

servers for one unit of data: o a.n o o
Network delay | Server | Server | Server | Server communication delays of_transmlssmns (I, j)Z)I’I o
betweersi—oj | o4 o2 o3 Oa The central scheduling problem® on a distributed
Serveroy (1) ; 2 g servers system DSS can be modelled by a multi-dalue
S .
v 3 3 5 > DAG G = {I, U, /1(Z), A()}. In this case we noteP={G,
Serverc, 3 3 2 0 >}. Figure 2 presents an example of DAG.
Table 1: Cost communicatiobetween serverglistances, — o ) (20,8,10, 9)

(15, n.a.,12,15)

Thus, the total communication delay between twkgds (15,10, 20, 5)
the amount of data from the first task to the sdomme, time
the speed cost between their servers.

A DSS itself may be divide into a set of areast thill
be defined and used later, but that has no effhatisg the
normal processing of an application. In Figure br f

example, there are two areas, Area 1 and Area 2.

(na. 8 22,11)

(19,12,15, 8)

2.2 Directed Acyclic Graph B0 (1812.1.2.10)
An application is decomposed into a set of indés Figure2 : Example of DAG
tasks that have to be processed. A task may neiedada n.a.= not allowed, i.e. cannot execute on this eerv
results from other tasks to fulfil its function atiebn send its In this example there are 9 tasks. The label @h éask

results to other tasks. The transfers of data betvilee tasks is its processing cost on the 4 servers. For e)@mhm label

introduce  dependencies between them. The resulting; = (15 o, 12, 15) on task 6 means that the processing
dependencies form a DAG. time of task 6 on serves; (respectivelyc,, 63, 64) is 15

The central §chedu|ing probled@ on a Distribl_Jted (resp., 12, 15). The label on an arc (i, j) is the dastume
Server System, is represented therefore by theviolg  fom i 10 j. For example the data volume commurgdaby

parameters: _ task 1 to task 3 is 2. If task 1 is executed owveses; and
* aset of servers, notéd={ 0y ..., g, interconnected by a {55k 3 is executed on serves the communication between
network, tasks 1 and 3 noted ;& 302 = 1*2 = 2, because the cost

+ a set of the tasks of the application, ndted{1,..., 1}, 10 communication betweenl ands2 is 1. Also we can see
be executed oBl. The execution of taski [/I, on server  that if task 1 is processed on sen@r and task 3 is
g, g Uz, is notedi/q. The subset of the servers able t0processed on serves, then gy 262 =302 =6.
process task i is noteq, and may be different froin,

» the processing times of each taskn a serverg; is a 2.3, Definition of a feasible solution

positive value noted7; ,, . The set of processing times of  we note PRED)J, the set of the predecessors of task

a given taski on all servers off is noted /%(Z). G: PRED()={k/kDI et(k,i)DU}

7T ,, = means that the taslcannot be executed by the ~ And we note SUCGJ, the set of the successors of task
serverc. inG: succf)={ j/j0let(,j)0u }

+ a set of the transmissions between the tasks of the A feasible solution S for the problem P is a stlude
application, noted U. The transmission of a resfilan  executions {i/¢; , il } with the following properties:
taski, i O I, toward a task, j O I, is noted (i, j). + each task of the application is executed at least once on

at least one servet, of %,
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e to each task of the application executed by a serger
of 2, is associated one positive execution d@,t[;er ,
« for each execution of a taskon a servew;, such that

PRED() # [0, there is at least an execution of a gk
OPREDY), on a serven,, g, 1 Z,, that can transmit its

result to servew; before the execution datg,, .

The algorithm proposed here, named DSS_1FA, has tw
phases: the first one is for the scheduling ofinagcopies
where we use the DSS-OPT algorithm [6] and the retco
one is for adding and scheduling additional backeggsies
when necessary.

3.1. Scheduling the original copies

The last condition, also known as the Generalized W€ schedule original copies of tasks in our atani
Precedence Constraint (GPC) [5], can be expressgeé m With the DSS-OPT algorithm [6]. The DSS-OPT aldunit

formally as:
Glo Ds]jtm, 20 if PRED§=C

' DkDPREDO'wp Dzk/tllar Ztklap +’Tk/zrp +Cklzrp‘\ lo, e|Se

It means that if a communication must be done betw
two scheduled tasks, there is at least one execuatiche
first task on a server with enough delay betweenetihd of
this task and the beginning of the second one far t
communication to take place. A feasible solut®for the
problemP is therefore a set of executioifg; of all i tasks

[J 1, scheduled at their dateg-,ar, and verifying the

Generalised Precedence Constraints GPC. Note ithat,
feasible solution, several servers may simultangausnot
execute the same task. This may be useful to genksss
communications.  All the executed tasks in thiasfele
solution, however, must respect the
Dependence Constraints.

2.4. Optimality Condition
Let T be the total processing time of an applicatiosdal

Generalize

is an extension of CPM/PERT algorithms type to the
distributed servers problem. In its first phasecamputes
the earliest feasible execution date of each taslewery
server, and in its second phase it builds a feasblution
(without server fault) starting from the end of tiraph with
the help of the earliest dates computed in ttst fihase.

LetP be a DSS scheduling problem, andGet {1, U,
r1(Z), A(Z)} be its DAG.

One can first note that there is an optimal ttig@ution
to this DSS scheduling problem. In this trivial &@dn, all
possible tasks are executed on all possible serasrsoon
as possible, and their results are then broadcastedll
others servers. This is an obvious waste of prauggower
and communication resources, however, and sometisng
optimal, but less wasteful in terms of used resesirds
éjsually needed.

The first phase of the DSS_OPT routine, DSS_LWB(),
goes from the initial tasks to the final ones, catmg along

the way the earliest feasible execution data;%r and

earliest end datdi/o , for all possible executiorisog; of

known as the makespan of the application) in aeach taski of problemp.

feasible solutiorg, with T defined asT = max(t,, +7,,)
iio,0s '
A feasible solutiorS* of the problemP modelled by a
DAG G = {l, U, 7(2), 4(2)} is optimal if its total

processing tim@* is minimal. That is, it does not exist any

feasible solutiors with a total processing time such thafl
<T*

2.5. Area Failure

Finally, we now consider a DSS with possibilit&sarea
failures. We suppose that the DSS is composed s#t af
areas, noted A,, ..., Z,}. Each areaX; is a subset of

The second phase of the DSS_OPT routine determines
for every task i that does not have any success@; ii.e.
taski is a “leaf” or final task, the executidfg; ending at the

earliest possible daté /o . If several executions of task i
end at the same smallest dabg,gr, one is chosen,

arbitrarily or using other criteria of convenienemad kept in
the solution. Then, for each kept executiég that has at
least one predecessor in the application, the subsd the
executions of its predecessors that satisfy @BQ(is
established. This subset of executions of predecesy i
contains at least an execution of each of its feskors in

servers ofr. Each server belongs to one and only one ared>- One executioi/a, of every predecessor task k of task i

For example in fig.1 we have 2 areas
Zl={01, 02} and Area2 :Z2={03, 04}.

One “area failure” of an area means that all genaé
this area are unavailable. In our problem, only amea
failure at most can occur. We call “failed area’A{Rhe
area, in which the area failure occurs, if it oscuio
simplify, we suppose that a failed area stay is #tate until
the end of the execution of the application.

A solution is “one area failure tolerant” or 1Féldrant
if at least one copy of each task of the graphxeceted on
at least one server outside of the failed area tledolution
is feasible. Note that, for at least one solutiorbé feasible
if there is one area failure, it is obvious thdttatks of the
application must be able to be executed on at least
servers in different areas.

n. THE DSS_1FA ALGORITHM

Areal =S chosen in the subset, arbitrarily or using ottréteria of

convenience, and kept in the solution. It is exeduat its
earliest possible datebk,gp. The examination of the

predecessors is pursued in a recursive manner thil
studied tasks do not present any predecessors in G.

3.2. Adding backup copies

The ADD_BACKUP_COPIES routine starts from tasks
without any predecessors, similarly to DSS_LWB(@hda
proceed from there to the end of the DAG. Firsthdre is
currently only one copy of a given task, it detims what
is the worst possible delay it may encounter ifadlufe
occurs on another server, while satisfying its GRGilso
determines the fastest server (not considering stvwer
executing the only current copy of this task in therent
solution) able to execute this task, and addscaupacopy
on this server to the solution, again considerimg worst
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possible delay resulting from this failure, whilatisfying
the GPC of this copy. Else the task has alreadyraév
copies in the optimal solution, and the routineed®ines for
each original copy of this task, what is the wqgressible
delay it may encounter if a failure occurs on apotberver,
while satisfying its GPC.

3.3. DSS_1_AREA_FAILURE algorithm

The complete DSS_1 AREA_FAILURE algorithm is
the following:

Input: G={I,U, 71(Z), A>)}
Output: A feasible solution with backup copies
DSS_1FA ()
DSS_OPT() /I first phase
ADD_BACKUP_COPIES_1FA() // second phase
end DSS_1FA
DSS_OPT()
DSS_LWB ()
T= max
0i/SUCc(i)=0 Do, 05
for all tasksi such that SUCQ(=0 do

L ~{ila/a0s andF), <T}

min (r,,, )

ilo ~ keepOnefromLi)

scheduldi/a;)
end for
end DSS_OPT
DSS_LWB()
for each task i where PREDE O do
for eachserverg; such thatg; 0 % do

b,, -0

1o,
I’i/zfr
end for
mark ()
end for
while there is a non marked taiskuch that
all its predecessdtsn G are markeddo
for each servers; such thatg; 0% do

T o— i + + ilon
Do max (min (Buas +7Euos +0aosiva))

Mg <« Dys +7T,

end for
mark ()
end while
end DSS_LWB
schedul€i/ar)

execute the taskat the datebI /. On the serveo:
r

if PRED() # 0 then
for each taskk such thatk 0 PRED{) do

L/% - {Wg | g0z, and
Beo, * o, *Co i, SBo,}

Koy keepOneFrm(nL'klgr )
schedulék/ ay)

— JT
ilo,

ilo, o,

end for
end if
end schedule
keepOneFrom(;)
return an executiong; of task i in the list of the
executions;.
end keepOneFrom.

ADD_BACKUP_COPIES()
for each task such that PRED(i) #1 do
if i has only one copy scheduled
or all copies of are on servers in the same area

then
Letqg; be the server executing a copy of
Leta; be the area such that/7 a;.
/I compute one backup on the fastest seefer |
/ outside the arem of g, if a; is the failed area
Leto, O a; be the fastest server able to execute itask
Execute a new backup copyi @ o, at date 0
end if
mark §)
end for
while there is a non marked taisguch that all its
predecessdrén G are markeddo
if i has only one copy scheduled
or all copies of are on servers in the same area
then
Letdg be the server executing the copy of
Let a; be the area such that// a;.
/I First compute the delayed execution daté tafski on this
/I server, if the failure is on an another area
find the delayed execution date of the copyai o;
taking only into account the delayed exemutiates of the
copies and backups of each predecessamooferify the GPC
/I Second compute one backup copy on the fasteser left
I outside area, if a; is the failed area
Let o, O a; be the fastest server able to exegute
Execute a backup copyiobn o, taking only into account the
delayed execution dates of the copi®l backups of each
predecessoridfo verify the GPC
else// i has at least two copies scheduled, on serveepiarate areas.
/I compute the delayed execution date of the cépgski on
/I each server, if the failure is on another area
for each serveo; executing a copy afdo
Find the delayed execution date of the copyoofg; taking only
into account the delayed executiates of the copies and
backups of each predecessor tof verify the GPC
end do
end if
mark §)
end while
end ADD_BACKUP_COPIES

3.4. Numerical example:

We consider here the probldPndefinite in figure 1 and
2, the DSS-OPT algorithm uses DSS_LWB to compuge th
earliest possible execution date of all tasks drpassible
servers, resulting in the following valuegnd r (Table 2)

1| b|n 2| bln 3| k|
o,| 0|15 o,| 019 o, 11|31
g 0|10 ag,| 0|12 g, | 11|18
g;| 0 | 20 o;| 0 |15 o3| 9|19
gs| 0| 5 a,| 0| 8 gs| 5|14
41w S5|b|rs 6|l bs|re
0,16 21 o, | 16| 28 01|20 |35
g,| 12118 g, | 12|32 0, | o | w
03|15 24 03| 15|24 o3 | 18| 30
o, | 18|23 o, | 18|28 o, | 14|29
7| b|rn 8| k|rs 9 b|r
0, | 28|38 o, | 28| 46 0y o |
g, | 30 | 50 g, | 30| 42 o, | 44 | 52
O3 | <) O3 | o <) 03 | © [
o, | 28|48 o0, | 28|38 o, | 48| 56

Table 2: The earliest possible execution date of all tasksall possible
servers for the problem P

It then computes the smallest makespan of anyisolib
the P problem :

0TS D@!jrz]i(n/m)_mm(oo’sz’oo P6)=52

In our example, the task 9 does not have any ssoreBhe
list Lg of the executions kept for this task in the solutis
reduced therefore to the executi@w, . Thus Lo= {9/03.
The execution of task 9 on the sererfis scheduled at date
44. Next, The tasks 6, 7 and 8 are the predexegsiotask
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9. For the task 6, the executidBig, may satisfy the
Generalised Precedence Constraints relative Ston.
Therefore, this execution is kept and is schedatedte 14
(bsios ). For task 7, executioWo; is kept and is scheduled
at date 28..., the table 3 presents the final exewsiii c;
kept by the DSS_OPT(P) algorithm, with their date o

execution, in an optimal solution S.
1o, 1oy | 2/o, 3oy | 4o, Sloy

6oy | 7loy 8/o, 9o,

0 0 0 5 12 16 14 28 30 44

10 5 12 14 18 28 29 38 42| 50

Table 3: final executions & kept by the DSS_OPT(P) algorithm

We obtain (figure 3) the following optimal scheahgi by
DSS_OPT(P) algorithm:

Task 1 execute
i7" on serveo;

Task 1 duplicated ar
executed on servey

A &l Slo1

1/62

7/0'1"“.

2o, | 4oy e 8io, | 9

1/cs¢ 3loy

0

i
4
-

> Communication time
6loy ~ ] |

1012141618 2830 38 424 52 t

Figure 3: DSS_OPT algorithm scheduler

By adding backup copies using ADD_BACKUP_COPIES
we get the following fault-tolerance schedulinggiiie 4.):

5

Original copies

7 . 6%o,
o1 " 5/c1 7lo1
o2 3o,
[¢7) 2o, 4o, 8/c; 9/c,
oy | 3o 6los v
6 2los |48I0s | 5%/c4 7%I04 9%0 |
8 B/ 04
0 5 1012141618 2830 38 42 52

Figure 4: Gantt chart given by DSS_1_AREA_FAILURE

Now we express some proprities on the results fdynthe
proposed algorithm.

Lemma 1: Theeasible solutior§ calculated by the DSS_OPT
algorithm is optimal if there is no area failure.

Proof: Because all copies of tasks with at leastsuccessor
are scheduled in S only if they ensure, directlyndirectly,
that the final copies receives their data in tinme the
solution, else are not used, it follows that thebgl
makespan of the solution S is the maximal endirig dthe
copies of the tasks without any successors.

Because only the copy with the earliest ending déteach
task without any successor, is used in the soluBont
follows that no possible solution may execute oaskt

without any successor that will end at an earldsge that
the one in solution S.

Thus the feasible solution S computed by DSS_OPT is
optimal in execution time for the problem withoutea
failure. QED

Theorem 1: The solution calculated by DSS 1FAULT is
optimal if there is no area failure.

Proof: Because the copies in the DSS_1FAULT satutio
come and only come from the DSS_OPT solution, tiéy
will be executed at the same dates if there isrea ailure.
Because of this and of Lemme 1, it then followst tthee
solution calculated by DSS_1FAULT is optimal if thes
no area failure. QED

Also, in the final solution computed by DSS_1FAgch
task of the DAG has at least two copies (comingnfrthe
DSS_OPT() routine), or one copy (coming from the
DSS_OPT() routine) and one backup copy (build by th
ADD_BACKUP_COPY_1FA() routine) , always executed
on different servers.

Furthermore, the execution date of each backuy aod
the delayed execution date of each original copying
from DSS_OPT is always evaluated by
ADD_BACKUP_COPIES_1FA() taking into account the
delayed execution dates of the copies and the &mecu
dates of the backups copies of each predecessog te
worst possible case of failure of a predecessohave:
Theorem 2: The solution calculated by DSS_1Ffeasible
if there is at most one area failure.

Also, Leta be the area that contains the servers failures.
Because the solution S is feasible when all theeserof one
area are unavailable, this solution is also feasfobnly one
or several servers of ar@aare unavailable, and if all servers
of all others areas are available. Thus:

Theorem 3: Let S be the solution created by DSS. Tis
solution S is also fault tolerant to the failure afie or
several servers, if all servers failures occuhmsame area.

The most computationally intensive part of DSS_QPT
is the first part DSS_LWB(). In this part, for eatzlski, for
each server executirigfor each predecesspof i, for each
server executing, a small computation is done. Thus the
complexity of DSS_LWB() isO(n’¥), where n is the
number of tasks if, ands is the number of servers in DSS.
Thus, the complexity of the DSS_OPT() algorithm is

o(n’sd).

Similarly, in ADD_BACKUP_COPIES_1FA(), for each
taski, for each copy of task(at most one copy per server),
for each predecessprof i, for eachcopy ofj (at most one
per server) one small computation is done. Thus the
complexity of ADD_BACKUP_COPIES_1FA() is bounded
by O(n’s?), wheren is the number of tasks I, ands is the
number of servers in DSS. Thus we have:

Theorem 4: The complexity of the DSS_1FAULT aldurit
is O(n’sY).

Iv. NUMERICAL EXPERIMENTS

4.1 Random graph generator

To evaluate DSS_1FA, we have compared the fault
tolerant solutions it generated on some classicablpms
and DAGs to optimal solutions without fault tolecgn In
our study a semi-random graph generator was impitede
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to generate weighted application DAGs with various

characteristics. This framework first executes thadom
graph generator program to construct the applicdd8Gs,
which is followed by the execution of the our sahlat
algorithms to generate output schedules. We congide
kinds of graphs. The first one is a regular simpi®-
dimensional grid DAG (see Figure 5. a.), exhibitedthe
numerical applications, with lot of parallelism avety local
communications. The second is the “butterfly” DAGe€
Figure 5. b.) present in applications such as thR& Br
shuffle algorithms, again with lot of parallelistnyt a more
complex communication pattern.

The servers performances are independent random
each task of the DAG, and so are the

values for
communication delays. The processing time of a task

random value generated between 10 and 30. T

communication delay between the tasks is also doran
value generated between 1 and 10.

]  Butterrly(2)
A - /
NN S i
it /
p S
»
><><' Butterfly(1)
~
S A =
XER A >
TS SX

a. 2-Dimensional
grid DAGs
(3 lines, 5 columns)

Figure5: Two different kind of graphs

b. 3-dimensional butterfly DAGs

4.2. Performance Results

Makespan average for butterfly DAGs

— —»— — makespan without backup
—m— makespan with backup

o 400 800 1200 1600 2000 2400
number of tasks

Figure : Makespan average for butterfly DAGs
In both kinds of DAGs (Figure 6 and Figure 7),ist

hfé)und that the makespan average with backup coigies

between 1.5 (usually) and 2 (at most) times the asp&n
without backup copies.

We got similar results when varying a little thenmber
of servers and number of areas.

Other experiments with totally random graphs aritth w
fork-join graphs vyielded similar results, so these anot
presented here.

V. ANALYSIS

The model of failure, as it features at most oneaa
failure, may seem limiting. However, if the probdiof
any area failure is very low, and the probabilitefsarea
failure are independent, then the probability ob tiailures
will be much smaller indeed.

Also, the solution solved by this new algorithnesishe
classical CPM/PERT relaxation, namely that an unbed
number of tasks may be processed on each serparatiel

In Figure 6 the DAG used is the 2-Dimensional gridwithout any effect on the tasks’ processing timethie same
DAGs. This kind of graph needs two parameters: thguay the classical CPM/PERT method do not consider

number of linesn and the number of columma. Thus a

resources constraints in order to get earliestdi@mt dates

nm-grid graph has* mvertices. Here the chosen parametersand detect critical paths. This relaxation is rastffom the

are: (20,15), (20,20), (25,25), (30,25), (30,30)d #40,30),
which correspond, respectively to 300, 400, 6Z8), B0O,
and 1200 tasks.

The Figure 7 uses the butterfly DAGs. This kinfl o

graph needs only one parameters: the butterflyegagrAn
n-dimensional butterfly graph has'( n+1) vertices. The
chosen degrees in this numerical tests are: 4, B, &nd 8,
which correspond, respectively to 80, 192, 4484]@&nd
2304 tasks.

In all our simulations, we fixed the number ofvess to
12 and the number of areas to 3 and each makespasga
is computed over 20 random DAGs.

Makespan average for Grid DAGs

2000 -+

1500 -+

— —— —makespan without backup
—=a— makespan with backup

makspan
B
Q
o]
]

o 200 400 600 800
number of tasks

1000 1200

Figure6 : Makespan average for 2-Dimensional grid DAGs

reality, if each server is a multiprocessors aettiire for
example. Or if each server is a time-shared, nusiérs
system with a permanent heavy load coming from rothe
applications, and the tasks of an application arheserver
represent a negligible additional load. Furthermeneen if
the above conditions are not met by the real tigteid
system targeted, the results found by our algorithay be
used as the first step of a list scheduling albarjtin which
the earliest execution dates of primary and badagies are
used as priority values to schedule these copieghen
servers of a real-life system. In the same way ehes

CPM/PERT results are used in some real-life sys@asthe

priority values of tasks in some list-schedulingaalthms

for real shared-memory or distributed architectures
This algorithm has two main advantages:

* when there is no area failure, the DSS_1FA’s soiuis
optimal because it uses the optimal solution coegbut
by DSS-OPT.

« when there is one area failure, th&S_1FA'’s solution
is certain to finish correctly, because every takks
two or more scheduled copies on different servars i
different areas in the final solution. If more thane
area failure occur, the solution may still finistut there
is no guaranty there.
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Note also that the solution built gives indicaticon the
sensibility of an application to one area failurehem
compared to the solution without any area faillrecause
the makespan in the presence of one area failunewsrst
case analysis.

Not considering the areas, one can note thatdhsi@n
built has fault tolerance to the failure of one iudual
server. Furthermore, the solution has fault toleeato the
failure of several individual servers, providedtttize failed
servers are all in the same area.

Another benefit of our algorithm is in using the
following idea: suppose that we know that some exarare
very likely to have a server failure, for some mrasEven if
they are not formally in the same area, it may betlwhile
to group them in a new specific artificial area,d®@af real
areas, to insure that the solution built is ablestovive
failures of any number of these servers, by usiagkbps
outside this artificial area.

vl. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed a polynomial salivegl
algorithm in which tasks with precedence constgaiand

communication delays have to be scheduled on an4

heterogeneous distributed system environment witle o
fault hypothesis. To provide a fault-tolerant daipty, we
employed primary and backup copies. But no badaies

were established for tasks which have more than one

primary copy.

The result have been a schedule in polynomial tima¢
gives earliest execution dates to copies of tadksnwhere
is no failure, and is a good resilient schedul¢hm case of
one failure. Performance evaluation on some DAG® @
increase in case of one server failure in makesparb to 2
times the optimal makespan without server failure.

The execution dates of the original and backupiesop
may be used as priority values for list schedulitgprithm
in cases of real-life, limited resources, and syste

In our future work, we intend to study the samebjfem
with sub-networks failures. Also, we intend to ddes the
problem of non permanent failures of servers. IKinave
want to consider the problem of the partial failafeone
server, in which one server is not completely ddwhloses
the ability to execute some tasks and keeps thigyatn
execute at least one other task.
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