
Route Planning in a Weakly Dynamic Undirected
Graph

Jean-Yves Colin
LITIS, Université du Havre, IUT

76610 Le Havre, France
Email: jean-yves.colin@univ-lehavre.fr

Ahmed Salem Ould Cheikh
Université de Nouakchott
Nouakchott, Mauritanie

Email: ahdsalem@univ-nkc.mr

Moustafa Nakechbandi
LITIS, Université du Havre, IUT

76610 Le Havre, France
Email: moustafa.nakechbandi@univ-lehavre.fr

Abstract—In this paper, we study weakly dynamic undirected
graphs, and we propose an efficient polynomial algorithm that
computes in advance alternative shortest paths for all possible
configurations. No additional computation is then needed after
any change in the problem because shortest paths are already
known in all cases. We use these results to compute critical
values for the traversal duration and to pre-compute best paths,
and we apply this result to one delivery problem for trucks from
one regional storehouse to several local stores when one possible
point has a variable traversal duration.
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I. INTRODUCTION

In a static problem, all data are supposed known from the
start. The real world is not static however, and the solutions
to static problems are not always useful. Thus, dynamic
problems, in which some of the data are neither static nor
perfectly known in advance, must be studied [1] [15].

Several approaches have been developed [5]. Full dynamic
algorithms usually deal with problems that can statically be
solved in polynomial time. They start from an optimal solution
to the static problem, and try to maintain it in an environment
with many consecutive or simultaneous changes. Their authors
present a lot of innovative data structures to reach this goal
[8], [11] [13].

When the delay between the occurrence of a change, and
the moment a solution is needed, is very short, or when the
problem itself is NP-hard, even faster solutions are needed,
although they do not try to find optimal solutions. Re-
optimization algorithms use an initial solution, and are usually
approximation algorithms which provide faster results than
classical algorithms with the same guaranty on the approx-
imation ratios, or which even guarantee better approximation
ratios than classical static algorithms with the same speed
performances [5] [10]. Others papers propose meta-heurisics,
for example swarm intelligence algorithms, such as ant colony
algorithms [2] [3].

Another approach uses probabilities. Probabilities are ap-
plied either to one or several parameters of the model (say
a weight) instead of using a fixed value for this parameter,
or the topology or structure itself of the model (say the
presence or not of a constraint) [4] [9] [12]. The probabilistic
combinatorial optimization algorithms proposed again usually
compute a solution to an initial problem, then either do a

robustness analysis of this solution in the probabilistic space,
or do a quick re-optimization of this solution as soon as the
real instance of the problem is known .

All these approches are used to study many problems, in-
cluding route planning algorithms and transportation problems.
For an overview on the problems, we refer to [16]. For ex-
ample, the particular problem of finding point-to-point shortest
paths on a large size road network with times depending traffic
is studied in [6].

In this paper, we will deal with full dynamic problems that
may be represented by a weakly dynamic undirected graph.
We first define what we call weakly dynamic graphs. Then
we propose an efficient polynomial algorithm that computes in
advance shortest paths for all possible configurations of this
graph. We use these results to compute critical values for
the variable part of the graph and to pre-compute alternative
shortest paths. Because the number of critical values is small,
the number of alternatives is small too. No additional re-
optimization is then needed after any change in the problem
because shortest paths are already known in all cases. We
apply this result to one delivery problem for trucks from one
regional storehouse to several local stores when one possible
point has a variable traversal duration.

II. PROBLEM DEFINITION

We first present a definition of weakly dynamic graph. This
definition extends the definition presented in [7] and [14].

Definition 1: A weakly dynamic undirected (resp. directed)
graph is an undirected (resp. directed) weighted graph in
which there is one unstable weighted edge (resp. arc). That
edge (resp. arc) has a variable positive weight that may change
at any time. All other edges (resp. arcs) of this graph are
stable, with known weights that never change.

In the rest of this paper, we will consider a weakly dynamic
undirected graph G(V,E), with V being the set of vertices of
G and E being the set of edges. Each edge (i, j) of E has a
positive stable weight pi,j , except for an edge (x1, x2) of E
that has a variable positive weight x that may change at any
time. The cost or length of a path at a given moment is the
sum of the weights of all of its edges at this moment. Figure 1
presents an example of a small weakly dynamic undirected
graph.



We now want to find a set of shortest paths between a
given vertex s0 and each vertex sn of G. We note Cs0,sn =
(s0, s1, ...sn) a shortest path of adjacent vertices between s0
and sn, if there is at least one. We also want to know the
length d(s0, sn) of each shortest path Cs0,sn computed.

III. MAIN RESULTS

A. The Proposed Algorithm

The proposed algorithm computes the shortest paths with
the following three consecutive steps:

1) it first computes shortest paths Cs(s0, sn) that do not
include the variable edge (x1, x2), between vertex s0
and each vertex sn of the graph. It computes the
constant length ds(s0, sn) of each path C(s0, sn) found,
too,

2) If ds(s0, x1) = ds(s0, x2) (i.e. the two vertices x1 and
x2 of the variable edge are at the same distance from
s0), the algorithm stops because the paths Cs(s0, sn)
found in step 1 are shortest paths regardless of the value
of x (cf. Corollary 1 later). Else it computes shortest
paths Cs(x1, sn) that do not include the variable edge
(x1, x2), between vertex x1 and each other vertex sn
of the graph, or shortest paths Cs(x2, sn) that do not
include the variable edge (x1, x2), between vertex x2

and each other vertex sn of the graph, depending on
whether x1 or x2 is closer to s0 (cf. Theorem 1 and
Theorem 2 later). It computes their lengths too.

3) If ds(s0, x1) < ds(s0, x2), then, for each vertex
sn of the graph, it computes a path Cv(s0, sn) =
Cs(s0, x1), Cs(x2, sn) that does include the variable
edge (x1, x2), between vertex s0 and vertex sn. Its
length dv(s0, sn) is

dv(s0, sn) = ds(s0, x1) + x+ ds(x2, sn) (1)

else if ds(s0, x1) > ds(s0, x2), then, for each vertex
sn of the graph, it computes a path Cv(s0, sn) =
Cs(s0, x2), Cs(x1, sn) that does include the variable
edge (x1, x2), between vertex s0 and vertex sn. Its
length dv(s0, sn) is

dv(s0, sn) = ds(s0, x2) + x+ ds(x1, sn) (2)

For each vertex sn, it then compares the length
ds(s0, sn) of the shortest path that do not include the
variable edge (x1, x2) and the length dv(s0, sn) of the
computed path that includes the variable edge (x1, x2).
A positive critical value cv(s0, sn) of x for each vertex
sn is computed, if it exists, that states when either
Cs(s0, sn) or Cv(s0, sn) is a shortest path between s0
and sn.

Because the weights are all positive, one may use Dijkstra’s
algorithm to compute efficiently the shortest paths in the
different steps.

We will use the example of Figure 1 to illustrate the
computation of shortest paths from vertex 0 to all other vertices
(or from all other vertices to vertex 0).
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Figure 1. Example of weakly dynamic undirected graph. The dotted edge
(2, 3) is the variable edge of this graph, and is valuated with the variable
value x.
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Figure 2. Shortest paths to vertex 0 if the variable edge (2, 3) is not
considered at all.

Table I
DISTANCES FROM OR TO VERTEX 0 WITHOUT THE VARIABLE EDGE

vertex n 0 1 2 3 4 5

ds(0, n) 0 1 7 5 8 9
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Figure 3. Shortest paths to vertex 2 if the variable edge is not considered
at all.

The first step computes shortest paths from vertex 0 to all
other reachable vertices without using the variable edge. An
example of result is presented in Figure 2.

The distances ds(0, n) of shortest paths from, or to, vertex
0 are presented in Table I.

One notes that vertex 3 is closer to vertex 0 that vertex 2
is. So step 2 now computes shortest paths from vertex 2 to
all other reachable vertices, again without using the variable
edge.

An example of result is presented in Figure 3.
The distances ds(2, n) of shortest paths from, or to, vertex 2

are presented in Table II.
The length dv(0, n) from vertex 0 to a vertex n of the

computed path Cv(0, n) that includes the variable edge (2, 3)
depends on the exact value of x. More precisely, dv(0, n) is



Table II
DISTANCES FROM OR TO VERTEX 2 WITHOUT THE VARIABLE EDGE

vertex n 0 1 2 3 4 5

ds(2, n) 7 6 0 5 2 3

Table III
DISTANCES FROM OR TO VERTEX 0 WITHOUT AND WITH THE VARIABLE

EDGE

vertex n 0 1 2 3 4 s5

ds(0, n) 0 1 7 5 8 9

dv(0, n) 5+x+7 5+x+6 5+x+0 5+x+5 5+x+2 5+x+3

Table IV
DISTANCES AND CRITICAL VALUES FROM OR TO VERTEX 0 WITHOUT AND

WITH THE VARIABLE EDGE

vertex n 0 1 2 3 4 5

ds(0, n) 0 1 7 5 8 9

dv(0, n) 5+x+7 5+x+6 5+x+0 5+x+5 5+x+2 5+x+3

cv(0, n) - - 2 - 1 1

then
dv(0, n) = ds(0, 3) + x+ ds(2, n) (3)

because vertex 3 is closer to vertex 0 than vertex 2 is (cf.
Theorem 1 and Theorem 2 later).

Table III presents the shortest distance ds(0, n) to 0 without
the variable edge, and the computed distance dv(0, n) to 0 with
the variable edge.

Step 3 of the algorithm builds Table III and compares the
constant result ds(0, n) and the variable result dv(0, n) for
each vertex n. For vertex 1 for example, it is obvious that
there is no positive value of x such that dv(0, 1) < ds(0, 1).
For vertex 2 however, one can note that dv(0, 2) < ds(0, 2)
if x < 2, and that dv(0, 2) > ds(0, 2) if x > 2. Else they are
equal.

Definition 2: We call critical value cv(s0, sn) of vertex sn
of V from vertex s0 in a weakly dynamic graph G, the positive
value such that a shortest path must use the variable edge if
x is inferior to this critical value, and must not use the the
variable edge if x is superior to this critical value. Thus, if
ds(s0, x1) < ds(s0, x2), we have

cv(s0, sn) = ds(s0, sn)− ds(s0, x1)− ds(x2, sn) (4)

else, if ds(s0, x1) > ds(s0, x2), we have

cv(s0, sn) = ds(s0, sn)− ds(s0, x2)− ds(x1, sn) (5)

Table IV presents the computed distances to 0 without and
with the variable edge, and the critical values cv associated to
each vertex n, if any.

One can note that a critical value cv(s0, sn) may not exist
for each vertex sn. If it exists and x is equal to this value for
a given node, then a shortest path to this vertex that does not
include the variable edge has the same length than a shortest
path to this vertex that includes the variable edge.

B. Analysis

The following theorems may be proved.
Theorem 1: In any weakly dynamic undirected graph with

a positive variable edge (x1, x2), if a shortest path from a
vertex s0 to sn includes the variable edge (x1, x2) in one
direction (from x1 to x2 for example), then any other shortest
path from vertex s0 to another vertex sm that includes the
variable edge (x1, x2) will do so in the same direction (x1 to
x2 in the example)

Theorem 2: Let the shortest paths from s0 to x1 (resp. x2)
that do not include the variable edge (x1, x2) have a length of
ds(s0, x1) (resp. ds(s0, x2)). If ds(s0, x1) < ds(s0, x2) then
all shortest paths that include the variable edge will do so in
the direction from x1 to x2. If ds(s0, x1) > ds(s0, x2) then
all shortest paths that include the variable edge will do so in
the direction from x2 to x1.

Corollary 1: If ds(s0, x1) = ds(s0, x2) then no shortest
path from s0 to a vertex sn that includes the variable edge is
shorter than the shortest path that do not include the variable
edge, for any positive value x. So it is never necessary in this
case to use the variable edge if there is a path froms0 to sn
that does not include it.

Theorem 3: the paths computed by the algorithm are all
shortest paths, depending on the value x of the variable edge.

Theorem 4: The algorithm has an overall complexity
of O(n2).

Theorem 5: the number of critical values in a weakly
dynamic undirected graph is inferior or equal to the number
of vertices of the graph.

C. Using The Critical Values

One interest of critical values appears when one consider
Theorem 5 and the set of all critical values found when com-
puting shortest paths between a vertex s0 and other vertices.
That is, if we sort in ascending order all the critical values
cv(s0, sn) in a problem, one can remark that the computed
set of shortest paths from vertex s0 to all other vertices in the
graph is the same for all values of x between two consecutive
critical values. For example, in the example of Figure 1, when
considering shortest paths to or from vertex 0, there is only a
total of two critical values for the variable weight x as noted
in Table IV: 2 appears once, and 1 appears twice. So there
are three intervals for x: values from 0 to 1, values from 1
to 2 , and finally values above 2. Figure 4 presents shortest
paths to vertex 0 if x ≤ 1. Figure 5 presents shortest paths to
vertex 0 if 1 < x ≤ 2. And Figure 6 presents shortest paths
to vertex 0 if 2 ≤ x.

In any weakly dynamic undirected graph, the value x may
change several times. But as long as it stays in the same
interval of critical values, the shortest paths computed for this
particular interval do not change and are still shortest paths.
As soon as x leaves an interval of critical values and enters
another one, then the shortest paths for the new interval the
variable weight x is in now are the correct ones. Furthermore,
the number of critical values is finite, so all the intervals of
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Figure 4. Shortest paths to vertex 0 if x ≤ 1.
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Figure 5. Shortest paths to vertex 0 if 1 < x ≤ 2.
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Figure 6. Shortest paths to vertex 0 if 2 < x.

x and their corresponding sets of shortest paths may be pre-
computed. These sets are alternative sets of shortest paths,
statically computed, to be used depending on the current value
of the variable weight,

Thus, the proposed algorithm can be used to efficiently pre-
compute shortest paths for all possible values of x from a given
vertex to all other vertices. It can be used too to efficiently
pre-compute shortest paths from all vertices of a graph to a
given target vertex, Once the alternative sets of shortest paths
have been pre-computed for all intervals of critical values of
x, they may be directly used and there is no need for later
computations.

The next part presents an example of application to logistics.

IV. APPLICATION

We now study the following delivery problem. A fleet of
trucks in an area must be managed. Each truck has to do one
unique trip from the regional warehouse to one local delivery
point. Because in this problem each truck may be considered
independently from all the other ones, we shall limit ourself
here to the particular case of one truck. One particular location
in the area is known to have a variable traversal duration
because of traffic jams, work in progress, or a lift bridge, for

example. The traversal duration of this location may change
one or more times during the trip. The position of the truck
is known at all time, thanks to a GPS.

How to direct, and if necessary redirect, the truck, so that it
follows the shortest path according to its current location and
the current conditions?

This problem can be represented by a weakly dynamic
undirected graph, with vertex s0 being the location of the
destination of the truck, sn being its starting point, and
variable edge (x1, x2) representing the particular location with
a variable traversal duration x, The proposed algorithm can
then be used to efficiently compute the critical values of x
between all location and the destination, then the intervals
of x, and finally alternative shortest paths from all locations
according to the intervals.

We will use again the example of Figure 1 to illustrate this
problem, with vertex 0 being the destination, and vertex 5
being the starting point. The proposed algorithm found 2
critical values, 1 and 2. This gave us three intervals for x:
from 0 to 1, from 1 to 2, and 2 and above. The corresponding
alternative shortest paths were presented in Figure 4, Figure 5,
and Figure 6.

These alternative paths are all given to the truck at the start,
with the current value of x. The truck may then check what
interval x is currently in, and decide what path it must follow.
During the trip, the value of x is monitored, either directly by
the truck, or from somewhere else. As soon as x changes from
the interval it was in, to another one, its value is communicated
to the truck. The truck may then, without any re-computation,
decide what is the current path it must follow now, according
to the location it is currently at. If, for example, the truck
started when x had a value of 0.5, so x was in the first interval,
and the truck is currently at vertex 2, from vertices 5 then
4, Then the truck must now go from vertex 2 to vertex 3.
However, if x changes to 4, x is now in the third interval, the
one with values above 2. The set of shortest paths associated
to this interval must then be consulted. Doing so, the truck
immediately knows that its next destination is vertex 1, from
vertex 2, in this case.

The return trip may be managed the same way, by com-
puting too the critical values of x, the intervals and their
alternative shortest paths, from all vertices to the regional
warehouses’ vertex 5.

One last important point must be considered, however.
What if x has the pathological behavior of continually switch-
ing between low and high values, so that the truck alternatively
follows paths that send it along a edge from a to b, then back
from b to a, without end, in a ping-pong effect. This is a well
known problem in dynamic problems. In this case one may
use a simple heuristic that states that once a path that does not
include the variable edge must be followed, because x reached
a value high enough to make including it a poor decision, it
must be followed to the end, even if x becomes smaller later.



V. CONCLUSION

In this paper, we studied weakly dynamic undirected graphs,
and we proposed an efficient polynomial algorithm that com-
putes in advance alternative shortest paths for all possible
configurations. No additional computation is then needed after
any change in the problem because shortest paths are already
known in all cases. We used these results to compute critical
values for the traversal duration and to pre-compute best paths,
and we applied this result to one delivery problem for trucks
from one regional storehouse to several local stores when one
possible point has a variable traversal duration.

We are currently working on extending this result to weakly
dynamic graphs with two or more variable edges. We also are
studying how to apply this result to other kinds of graphs,
such as graphs with directed arcs and cycles.

REFERENCES

[1] M. Alivand, A.A. Alesheikh and M.R. Malek, "New method for finding
optimal path in dynamic networks". World Applied Sci. J.,2008, 3: 25-
33 (2008).

[2] H.R. Bajgan, and R.Z. Farahani. "Using colony system and neighbor-
hood search for dynamic vehicle routing problem". American Journal
of Operational Research, vol. 2, no.4, pp. 31-44 (2012).

[3] S. Balev, F. Guinand, Y. Pigné, "Maintaining Shortest Paths in Dynamic
Graphs". In proceedings of the International Conference on Non-Convex
Programming: Local and Global Approaches Theory, Algorithms and
Applications (NCP’O7). 2007, December 17-21, Rouen (2007).

[4] D.J. Bertsimas. Probabilistic combinatorial optimization problems. PhD
thesis, Massachusetts, Institute of Technology, (1988).

[5] N. Boria and V. T. Paschos, "Optimization in dynamic environments",
Cahier du Lamsade 314, Université Paris-Dauphine, (2011).

[6] A. Casteigts, P. Flocchini. W. Quattrociocchi, and N. Santoro. "Time-
varying graphs and dynamic networks". In ADHOC-NOW, pages
346–359, (2011).

[7] J.-Y. Colin, M. Nakechbandi and A.S. Ould Cheikh, "Searching Shortest
Paths in Weakly Dynamic Graphs", ECCS’12 : European Conference
on Complex Systems, sept. 3-7 2012, Brussels (2012).

[8] C. Demetrescu and G.F. Italiano, "A new approach to dynamic all pairs
shortest paths", J. ACM, 2004, 51(6):968–992 (2004).

[9] D. Fulkerson, Expected critical path lengths in PERT networks. Opera-
tions Research 1962, 10 808 - 817 (1962).

[10] P. Jaillet. Probabilistic traveling salesman problems. PhD thesis, Mas-
sachusetts Institute of Technology, (1985).

[11] H. Mao, "Pathfinding Algorithms for Mutating Graphs", Computer
Systems Lab 2007-2008 (2008).

[12] P.B Mirchandani and H. Soroush. "Optimal paths in probabilistic net-
works. A case with temporary preferences". Computers & Operations
Research, 1985, 12:365 - 383 (1985).

[13] A. Orda and R. Rom. "Shortest-path and minimum-delay algorithms
in networks with time dependent edge length". J. ACM, 1990, 37(3),
607–625 (1990).

[14] A. S. Ould Cheikh, J.-Y. Colin and M. Nakechbandi, "Problème de trans-
port dans un graphe faiblement dynamique", GOL’12 : 1st International
IEEE Conference on Logistics Operations Management, 17-19 October,
Le Havre (2012).

[15] G. Ramalingam and T. Reps. "On the computational complexity of
dynamic graph problems", Theoret. Comput. Sci. 1996, 158 233-277
(1996).

[16] P. Sanders and D. Schultes "Engineering Fast Route Planning Algo-
rithms", LNCS 4525, pp. 23–36, (2007).


