

AN ALGORITHM AND SOME NUMERICAL EXPERIMENTS FOR THE
SCHEDULING OF TASKS WITH FAULT-TOLERANCY CONSTRAINTS ON

HETEROGENEOUS SYSTEMS

Moustafa NAKECHBANDI
Jean-Yves COLIN

LITIS, Le Havre University,
5, rue Philippe Lebon, BP 540, 76058, Le Havre cedex, France.

{moustafa.nakechbandi, jean-yves.colin}@univ-lehavre.fr

KEYWORDS

DAG, Scheduling with communication, Fault tolerant,
Heterogeneous systems.

ABSTRACT

In this paper, we propose an efficient scheduling algorithm for
problems in which tasks with precedence constraints and
communication delays have to be scheduled on an heterogeneous
distributed system with an one fault hypothesis. Based on an
extension of the Critical-Path Method CPM/PERT, our algorithm
combines an optimal schedule with some additional tasks
duplication, to provide fault-tolerance. Backup copies are not
established for tasks that have already more than one original
copy. The result is a schedule in polynomial time that is optimal
when there is no failure, and is a good resilient schedule in the
case of one server failure. We finally compare the optimal
solutions with the resilient solutions found by this algorithm on
several semi-random DAGs.

I. INTRODUCTION

 Heterogeneous distributed systems have been
increasingly used for scientific and commercial
applications. Recent examples of such applications include
Automated Document Factories (ADF) in banking
environments where several hundred thousands documents
are produced each day on networks of several
multiprocessors servers. Or high performance Data Mining
(DM) systems (Palmerini 2004) that need to process very
large data collections using very time-consuming
algorithms. Or Grid Computing systems (Ruffner et al.
2003, Venugopal et al. 2004) such as Computational
Grids which focus primarily on very computationally-
intensive operations, or Data Grids which control the
sharing and management of large amounts of distributed
data.
 However, efficiently using these heterogeneous
systems is a hard problem, because the general problem of
optimally scheduling tasks is NP-complete, even when
there are no communication delays (Kwok and Ahmad
1999, Garey and Johnson 1979). When the application
tasks can be represented by Directed Acyclic Graphs
(DAGs), many dynamic scheduling algorithms have been
devised. For some examples, see (Maheswaran and Siegel
1998, Iverson and Özgüner 1998, Chen, and Maheswaran
2002). Also, several static algorithms for scheduling DAGs
in meta-computing systems are described in (Colin and
Chrétienne 1991, Topcuoglu et al. 1999, Alhusaini, et al.
1999, Kwok and Ahmad 1999). Most of them suppose that
tasks compete for limited processor resources, and thus
these algorithms are mostly heuristics. Problems with fault
tolerant aspects are less studied. Reliable execution of a set

of tasks is usually achieved by task duplication and backup
copies (Qin and Jiang 2006, Randell 1975, Chen and
Avizienis 1978, Girault, et al. 2004).
 A very classical and useful tool to study static
scheduling problems with DAG is the Critical Path Method
(also known as CPM, or PERT method, or CPM/PERT)
(Maheswaran and Siegel 1998). Using a relaxation of the
constraint on the number of available processors, this
method gives results such as a lower bound on the
execution time (or makespan) of the application and lower
bounds on the execution dates of all tasks of the DAG.
Because of the relaxation, tasks can be executed as soon as
possible. Improvements and limits of this method to
distributed systems with communications delays may be
found in (Colin and Chrétienne 1991, Colin et al. 1999,
Nakechbandi et al. 2002), for example. In (Colin et al.
2005), we studied the problem of scheduling the tasks of a
DAG on the servers of an heterogeneous system. There,
the relaxation used in CPM/PERT was replaced by the dual
relaxation that each server has no constraint on the number
of tasks it can simultaneously process. That is, each server
can simultaneously process a non limited number of tasks
without loss of performances. Our goal was to compute a
lower bound on the execution time of a realistic solution,
and compute lower bounds on the execution dates of all
tasks of the DAG. In (Nakechbandi et al. 2007), we further
supposed that one server (and at most one) could suffer
from a crash fault. The algorithm presented there improved
on the one presented in (Colin et al. 2005) by adding
backup copies to the optimal solution build.
 The solution we propose now is simpler than the one
presented in (Nakechbandi et al. 2007). Additionally, we
present some numerical experiments and simulation
results. This rest of this paper is divided into four main
parts. In the first one, we present the problem, and in the
second one, we present a solution to the problem. In the
third part, we make some numerical experiments using
randomly generated tasks graphs, comparing the optimal
solutions with the resilient solutions found by this
algorithm. Finally, in the fourth part, we discuss the
advantages and disadvantages of the proposed solution.

II. THE CENTRAL PROBLEM

2.1 The Distributed Servers System

 We call Distributed Servers System (DSS) a virtual set
of geographically distributed, multi-users, heterogeneous
or not, servers. Therefore, a DSS has the following
properties: first, the processing time of a task on a DSS
may vary from a server to another. The processing time of

each task on each server is supposed known. Second,
although it may be possible that some servers of a DSS are
potentially able to execute all the tasks of an application, it
may also be possible in some applications that some tasks
may not be executed by all servers. In a DSS problem, we
suppose that the needs of each task of an application are
known, and that at least one server of the DSS may
process it.
 The classical CPM/PERT relaxation of the number of
processors, is replaced in the DSS problem with the dual
relaxation that each server has no constraint on the number
of tasks it can simultaneously process. Thus we suppose
that the concurrent executions of some tasks of the
application on a server have a negligible effect on the
processing time of any other task of the application on the
same server.
 The transmission delay of a result between two tasks
depends on the tasks and on their respective sites. The
communication delay between two tasks executed on the
same server is supposed equal to 0.

Fig. 1: Example of Distributed Servers System with the list of the

executable services for each server.

2.2 Directed Acyclic Graph

 An application is decomposed into a set of indivisible
tasks that have to be processed. A task may need data or
results from other tasks to fulfil its function and then send
its results to other tasks. The transfers of data between the
tasks introduce dependencies between them. The resulting
dependencies form a Directed Acyclic Graph. Because the
servers are not necessarily identical, the processing time of
a given task can vary from one server to the next.
Furthermore, the duration of the transfer of a result on the
network cannot be ignored. This communication delay is
function of the size of the data to be transferred and of the
transmission speed that the network can provide between
the involved servers. Note that if two dependent tasks are
processed themselves on the same server, this
communication delay is considered to be 0.
 The central scheduling problem P on a Distributed
Server System, is represented therefore by the following
parameters:
• a set of servers, noted Σ = {σ1, ..., σs}, interconnected

by a network,
• a set of the tasks of the application, noted I = {1,..., n},

to be executed on Σ. The execution of task i, i ∈ I, on
server σr, σr ∈ Σ, is noted i/σr. The subset of the
servers able to process task i is noted Σi, and may be
different from Σ,

• the processing times of each task i on a server σr is a

positive value noted
ri σπ / . The set of processing

times of a given task i on all servers of Σ is noted

Πi(Σ).
ri σπ / = ∞ means that the task i cannot be

executed by the server σr.
• a set of the transmissions between the tasks of the

application, noted U. The transmission of a result of an
task i, i ∈ I, toward a task j, j ∈ I, is noted (i, j). It is
supposed in the following that the tasks are numbered
so that if (i, j) ∈ U, then i < j,

• the communication delays of the transmission of the
result (i, j) for a task i processed by server σr toward a
task j processed by server σp is a positive value noted

pr jic σσ /, / . The set of all possible communication

delays of the transmission of the result of task i,
toward task j is noted ∆i,j(Σ). Note that a zero in ∆i,j(Σ)
mean that i and j are on the same server, i.e.

pr jic σσ /, / = 0 ⇒ σr = σp. And
pr jic σσ /, / = ∞ means

that either task i cannot be executed by server σr, or
task j cannot be executed by server σp, or both.

 Let Π (Σ) = U
Ii∈

Πi (Σ) be the set of all processing

times of the tasks of P on Σ.

 Let ∆ (Σ) = U
Uji ∈),(

∆i,j (Σ) be the set of all

communication delays of transmissions (i, j) on Σ.
 The central scheduling problem P on a distributed
servers system DSS can be modelled by a multi-valued
DAG G = {I, U, Π(Σ), ∆(Σ)}. In this case we note P={G,
Σ}.
Example 1 : Figure 2 presents an example of DAG.

Fig. 2. Example of DAG : the Πi vector on a node is the vector of the

processing time of task i on the various servers, and ∆i,j on an arc is the

communication delays matrix between the two tasks depending on the

servers that process them.

 On this example, if we have 4 servers {σ1, σ2, σ3, σ4 }

and if Π1 = (3333, ∞, 2, ∞), then 1 /1 σπ =3. And 2 /1 σπ = ∞ ,
meaning that server σ2 cannot execute task 2 etc.
 On the same example, communications from task 1 to
task 2 are given by matrix ∆1,2 in Fig.3.

 σ1 σσσσ2222 σ3 σ4

σ1 0 3 2 ∞

σ2 ∞ ∞ ∞ ∞

σσσσ3333 2 3333 0 ∞

σ4 ∞ ∞ ∞ ∞

Fig. 3. Example of communication delays matrix ∆1,2
between task 1 and task 2.

Possible Tasks

task 1
task 2
task 4
task 5

SERVER σ1 SERVER σ2

 Possible Tasks

task 2
task 3
task 5

Possible Tasks

task 1
task 2
task 3
task 5
task 6

SERVER σ3 SERVER σ4

Possible Tasks

task 3
task 4
task 5
task 6

Network

2

3

1

Π3

Π2

Π1

∆2,4
4

5

6

Π6

Π4

Π5
∆5,6

∆4,6

∆3,5

∆1,2

∆1,3
∆2,5

∆3,4

 In the matrix of Fig. 3, one can see that if task 1 is
processed on server σ3 and task 2 is processed on server
σ2 , then c1/σ3, 2/σ2 = 3.

2.3. Definition of a feasible solution

We note PRED(i), the set of the predecessors of task i in

G: { }),(et /)PRED(UikIkki ∈∈=

 And we note SUCC(i), the set of the successors of task

i in G: { }),(et /)SUCC(UjiIjji ∈∈=

 A feasible solution S for the problem P is a subset of
executions { i/σr , i∈I } with the following properties:

• each task i of the application is executed at least once

on at least one server σr of Σi,
• to each task i of the application executed by a server σr

of Σi, is associated one positive execution date
rit σ/ ,

• for each execution of a task i on a server σr, such that
PRED(i) ≠ ∅, there is at least an execution of a task k,
k ∈PRED(i), on a server σp, σp ∈ Σκ, that can transmit

its result to server σr before the execution date
rit σ/ .

 The last condition, also known as the Generalized
Precedence Constraint (GPC) (Colin et al. 1999), can be
expressed more formally as:







++≥Σ∈∃∈∀

≥
∈∀

rpppr

r

ikkkikp

i

r
cttik

t
Si

σσσσσ

σ

πσ
σ

 /, / / //

/

/),PRED(

0
/

else

)PRED(if ∅=i

 It means that if a communication must be done between
two scheduled tasks, there is at least one execution of the
first task on a server with enough delay between the end of
this task and the beginning of the second one for the
communication to take place. A feasible solution S for the
problem P is therefore a set of executions i/σr of all i tasks,

i ∈ I, scheduled at their dates
rit σ/ , and verifying the

Generalised Precedence Constraints GPC. Note that, in a
feasible solution, several servers may simultaneously or
not execute the same task. This may be useful to generate
less communications. All the executed tasks in this
feasible solution, however, must respect the Generalized
Dependence Constraints.

2.4. Optimality Condition

 Let T be the total processing time of an application
(also known as the makespan of the application) in a
feasible solution S, with T defined as:

)(max // rr

r

ii
Si/

tT σσ
σ

π+=
∈

 A feasible solution S* of the problem P modelled by a
DAG G = {I, U, Π(Σ), ∆(Σ)} is optimal if its total
processing time T* is minimal. That is, it does not exist
any feasible solution S with a total processing time T such
that T < T*.

III. THE DSS_1FAULT ALGORITHM

 The algorithm proposed here, named DSS_1FAULT,
has two phases: the first one is for the scheduling of
original copies where we use the DSS-OPT algorithm

(Colin et al. 2005) and the second one is for adding and
scheduling additional backups copies when necessary.

3.1. Scheduling the original copies

 We schedule original copies of tasks in our algorithm
with the DSS-OPT algorithm (Colin et al. 2005). The
DSS-OPT algorithm is an extension of CPM/PERT
algorithms type to the distributed servers problem. In its
first phase, it computes the earliest feasible execution date
of each task on every server, and in its second phase it
builds a feasible solution (without server fault) starting
from the end of the graph with the help of the earliest dates
computed in the first phase.
 Let P be a DSS scheduling problem, and let G = {I, U,
Π(Σ), ∆(Σ)} be its DAG.
 One can first note that there is an optimal trivial
solution to this DSS scheduling problem. In this trivial
solution, all possible tasks are executed on all possible
servers, as soon as possible, and their results are then
broadcasted to all others servers. This is an obvious waste
of processing power and communication resources,
however, and something as optimal, but less wasteful in
terms of used resources, is usually needed.
 The first phase of the DSS_OPT routine, DSS_LWB(),
goes from the initial tasks to the final ones, computing
along the way the earliest feasible execution dates

r / ib σ and earliest end date r / ir σ , for all possible

executions i/σr of each task i of problem P.
 The second phase of the DSS_OPT routine determines,
for every task i that does not have any successor in G, i.e.
task i is a “leaf” or final task, the execution i/σr ending at

the earliest possible date r / ir σ . If several executions of

task i end at the same smallest date
r / ib σ , one is chosen,

arbitrarily or using other criteria of convenience, and kept
in the solution. Then, for each kept execution i/σr that has
at least one predecessor in the application, the subset Li of
the executions of its predecessors that satisfy GPC(i/σr) is
established. This subset of executions of predecessors of i
contains at least an execution of each of its predecessors in
G. One execution k/σp of every predecessor task k of task i
is chosen in the subset, arbitrarily or using other criteria of
convenience, and kept in the solution. It is executed at its

earliest possible date
p / kb σ . The examination of the

predecessors is pursued in a recursive manner until the
studied tasks do not present any predecessors in G.

3.2. Adding backup copies

 The ADD_BACKUP_COPIES routine starts from tasks
without any predecessors, similarly to DSS_LWB(), and
proceed from there to the end of the DAG. First, if there is
currently only one copy of a given task, it determines what
is the worst possible delay it may encounter if a failure
occurs on another server, while satisfying its GPC. It also
determines the fastest server (not considering the server
executing the only current copy of this task in the current
solution) able to execute this task, and adds a backup copy
on this server to the solution, again considering the worst
possible delay resulting from this failure, while satisfying
the GPC of this copy. Else the task has already several

copies in the optimal solution, and the routine determines
for each original copy of this task, what is the worst
possible delay it may encounter if a failure occurs on
another server, while satisfying its GPC.
 The complete DSS_1FAULT algorithm is the
following:

Input: G = {I, U, Π(Σ), ∆(Σ)}

Output: A feasible solution with backup copies
DSS_1FAULT ()
 DSS_OPT() // first phase
 ADD_BACKUP_COPIES() // second phase

end DSS_1FAULT

DSS_OPT()

 DSS_LWB ()

)(minmax /
)(SUCC/ r

ir

i
ii

rT σ
σ Σ∈∀∅=∀

=

 for all tasks i such that SUCC(i) = ∅ do

 iL ← { i/σr / σr ∈ Σι and Tr
ri ≤σ/ }

 i/σr ← keepOnefrom(iL)

 schedule (i/σr)
 end for

end DSS_OPT

DSS_LWB()

 for each task i where PRED(i) = ∅ do
 for each server σr such that σr ∈ Σi do

 0/ ←
rib σ

rr iir σ/ / πσ ←

 end for

 mark (i)
 end for
 while there is a non marked task i such that

 all its predecessors k in G are marked do
 for each server σr such that σr ∈ Σi do

))(min(max /,///
)(PRED

/ rppp

kp

r ikkk
ik

i cbb σσσσ
σ

σ π ++←
Σ∈∀∈∀

rrr iii br σσσ π /// +←

 end for
 mark (i)
 end while

end DSS_LWB

schedule(i/σσσσr)

 execute the task i at the date
rib σ/ on the server σr

 if PRED(i) ≠ ∅ then
 for each task k such that k ∈ PRED(i) do

 ri

kL
σ/

← { k/σq / σp ∈ Σκ and

rrppp iikkk bcb σσσσσ π //,/// ≤++ }

 k/σq ← keepOneFrom(ri

kL
σ/

)

 schedule (k/σq)
 end for

 end if

end schedule

keepOneFrom(Li)

 return an execution i/σr of task i in the list of the
 executions Li.
end keepOneFrom.

ADD_BACKUP_COPIES()

 for each task i such that PRED(i) = ∅ do

 if i has only one copy scheduled then

 //compute one backup on the fastest server left, if
 // failure is on server of this copy

 Let σ r ≠ σi be the fastest server able to execute i
 Execute a new backup copy of i on σ r at date 0

 end if
 mark (i)
 end for
 while there is a non marked task i such that all its

predecessors k in G are marked do
 if i has only one copy scheduled then
 Let σi be the server executing the copy of i
 // First compute the delayed execution date of
 // task i on this server, if the failure is on an
 // another server
 find the delayed execution date of the copy of i

on σ i taking only into account the delayed
execution dates of the copies and backups of
each predecessor of i to verify the GPC

 // Second compute one backup copy on the
 // fastest server left, if failure is on server of
 // primary
 Let σ r ≠ σi be the fastest server able to execute i
 Execute a backup copy of i on σ r taking only

into account the delayed execution dates of the
copies and backups of each predecessor of i to
verify the GPC

 else // i has at least two copies scheduled, on
 // separate servers, of course

 // compute the delayed execution date of the
 // copy of task i on each server, if the failure is
 // on an another server
 for each server σ i executing a copy of i do
 Find the delayed execution date of the

copy of i on σ i taking only into account
the delayed execution dates of the copies
and backups of each predecessor of i to
verify the GPC

 end do

 end if
 mark (i)
 end while
end ADD_BACKUP_COPIES

Example 2 : If we consider the graph of the example 1,
and using 4 servers the DSS_OPT gives the following
optimal scheduling (Fig. 4.) :

Fig. 4. Gantt chart given by DSS_OPT. The fact that task 3 is executed at

the same time that task 2 on server σ3 comes from the CPM/PERT

relaxation.

server
s s

time

Task 3
duplicated and

executed
on server σ4

Task 3 executed
on server σ3

By adding backup copies using ADD_BACKUP_COPIES
we get the following fault-tolerance scheduling (Fig. 5.):

Fig. 5. Gantt chart given by DSS_1FAULT

 Because the computed execution time of each task on
each server is its earliest execution time on this server, and
because only the copy with the earliest ending time, of
each task without any successor, is used in the solution
calculated by DSS_OPT() , and finally because all other
copies are used only if they ensure that the final copies
receives their data in time else they are not used, it follows
that the feasible solution computed by DSS_OPT is
optimal in execution time for the problem without server
failure.

Lemma 1: The feasible solution calculated by the DSS_OPT
algorithm is optimal if there is no server failure.
 Because the copies in the DSS_1FAULT solution
coming from the DSS_OPT solution will not be delayed if
there is no server failure, and because additional backup
will not be used in this case, then we have:

Theorem 1: The solution calculated by DSS_1FAULT is
optimal if there is no server failure.

 Also, in the final solution computed by
DSS_1FAULT(), each task of the DAG has at least two
copies (coming from the DSS_OPT() routine), or one copy
(coming from the DSS_OPT() routine) and one backup
copy (build by the ADD_BACKUP_COPY() routine) ,
always executed on different servers.
 Furthermore, the execution date of each backup copy
and the delayed execution date of each original copy
coming from DSS_OPT is always evaluated by
ADD_BACKUP_COPIES() taking into account the
delayed execution dates of the copies and the execution
dates of the backups copies of each predecessor, using the
worst possible case of failure of a predecessor, we have:

Theorem 2: The solution calculated by DSS_1FAULT is
feasible if there is at most one server failure.

 The most computationally intensive part of DSS_OPT()
is the first part DSS_LWB(). In this part, for each task i,
for each server executing i, for each predecessor j of i, for
each server executing j, a small computation is done. Thus
the complexity of DSS_LWB() is Ο(n2

s
2), where n is the

number of tasks in P, and s is the number of servers in

DSS. Thus, the complexity of the DSS_OPT() algorithm
is Ο(n2

s
2).

 Similarly, in ADD_BACKUP_COPIES(), for each task
i, for each copy of task i (at most one copy per server), for
each predecessor j of i, for each copy of j (at most one per
server), one small computation is done. Thus the
complexity of ADD_BACKUP_COPIES() is bounded by
Ο(n2

s
2), where n is the number of tasks in P, and s is the

number of servers in DSS. Thus we have:
Theorem 3: The complexity of the DSS_1FAULT
algorithm is Ο(n2

s
2).

IV. PERFORMANCE EVALUATION

 To evaluate DSS_1FAULT, we have compared the
fault tolerant solutions it generated on some classical
problems and DAG to optimal solutions without fault
tolerancy. These numerical experiments were done using
simulations on three different kinds of graphs. The first one
is a simple, semi-random, one level ‘fork-join’ DAG (see
Fig. 6. a.), with limited parallelism. The second one is a
regular simple two-dimensional grid DAG (see Fig. 6. b.),
exhibited by some numerical applications, with lot of
parallelism and very local communications. The last one is
the “butterfly” DAG (see Fig6. c.) present in applications
such as the FFT or shuffles algorithms, again with lot of
parallelism, but a more complex communication pattern.
The servers performances are independent random values
for each task of the DAG, and so is each communication
delay.

Fig. 6. Three different kind of graphs

4.1. Fork-Join DAG

 As expected, this kind of DAG does show a very
limited parallelism. On the Gantt chart example in Fig. 7,
one can distinguish the original copies of the tasks on the
left part of each server’s simulated activity chart, and the
added backup copies on the right part.

Fig. 7. Gantt chart for Fork-Join DAG

A. These lines represent the execution of the originals copies

A
B

backup copies

originals copies

server
s s

time

server

time

B. These lines represent the execution of the backups copies.

4.2. 2-Dimensional grid DAG

 This highly parallel DAG is much more efficiently
executed on the servers. On the Gantt chart example in Fig.
8, the original copies of the tasks are grouped in the left
part of each server’s simulated activity chart, with the
added backup copies spread more widely on the rights part.
Although this is not clearly visible on the black and white
figure, some added backup copies of the earliest tasks of
the DG are present in the mist of the original copies.

Fig. 8. Gantt chart for grid DAG

A. These lines represent the execution of the originals copies

 B. These lines represent the execution of the backups copies.

4.3. Butterfly DAG

 The Butterfly is a highly parallel DAG too. On the
Gantt chart example of Fig. 9, the original copies are
clearly distinguishable one the left, as bands. Because of
the random nature of the server’s performances, these
bands tend to become fuzzier as time passes, however. The
backup copies are scheduled later on the right part of the
chart.

Fig.9. Gantt chart for Butterfly DAG

A. These lines represent the execution of the originals copies

B. These lines represent the execution of the backups copies.

4.4. Makespan with and without backup copies

 In all three kinds of DAGs, it is found that the
makespan average with backup copies is between 1.5

(usually) and 2 (at most) times the makespan without
backup copies. For example, in the Butterfly DAGs, we
obtained the following figure (Fig . 10). In this simulation
the number of tasks varies from 10 to 1200 tasks and we
have the average over 50 random DAGs.

Fig.10. Makespan average for Butterfly DAGs

A. Makespan without backup, B. Makespan with backup,

V. ANALYSIS

 This algorithm has two advantages:
• when no server fails, the DSS-1FAULT’s solution is

optimal as it uses the optimal solution computed by
DSS-OPT.

• when there is a failure of one server, the DSS-
1FAULT’s solution is certain to finish correctly,
because every tasks has two or more scheduled copies
on different servers in the final solution. If more than
one fault occur, the solution may still finish, but there
is no guaranty there.

 We do not establish backup copies for tasks which have
already two or more original copies from the DSS-OPT
algorithm scheduling to limit tasks duplication and
processor. It also gives indications on the sensibility of an
application to one server failure when compared to the
solution without any server failure, because the makespan
in the presence of one failure is a worst case analysis.
 The model of failure, as it features at most 1 crash, may
seem poor. However, if the probability of any failure is
very low, and the probabilities of failure are independent,
then the probability of two failures will be much smaller
indeed. Furthermore, the algorithm may be extended to 2
or more failures, by using two or more backup copies per
task. The efficiency of this kind of solution to the “k-
failures” problem is not investigated, yet.
 Finally, the solution solved by this new algorithm uses
the classical CPM/PERT relaxation, namely that an
unbounded number of tasks may be processed on each
server in parallel without any effect on the tasks’
processing time, in the same sense that the CPM/PERT
method do not consider resources constraints in order to
get earliest execution dates. This relaxation is not far from
the reality, if each server is a multiprocessors architecture.
Or if each server is a time-shared, multi-users system with
a permanent heavy load coming from other applications,
and the tasks of an application on each server represent a
negligible additional load. In other cases, the same way
these CPM/PERT results are used in some real-life systems
as the priority values of tasks in some list-scheduling
algorithms, the result found by our algorithm may be used

A
B

B A

A

B

time

server
s s

time

server
s s

Makespan

number of tasks

as the first step of a list scheduling algorithm, in which the
earliest execution dates of primary and backup copies are
used as priority values to schedule these copies on the
servers of a real-life system.

VI. CONCLUSION AND FUTURE WORKS

 In this paper, we have proposed a polynomial
scheduling algorithm in which tasks with precedence
constraints and communication delays have to be
scheduled on an heterogeneous distributed system
environment with one fault hypothesis. To provide a fault-
tolerant capability, we employed primary and backup
copies. But no backup copies were established for tasks
which have more than one primary copy.
 The result have been a schedule in polynomial time that
gives earliest execution dates to copies of tasks when there
is no failure, and is a good resilient schedule in the case of
one failure. Performance evaluation on some DAGs gave
an increase in case of one server failure in makespan of 1.5
to 2 times the optimal makespan without server failure.
 The execution dates of the original and backup copies
may be used as priority values for list scheduling algorithm
in cases of real-life, limited resources, and systems.
 In our future work, we intend to study the same
problem with sub-networks failures. Also, we intend to
consider the problem of non permanent failures of servers.
Finally, we want to consider the problem of the partial
failure of one server, in which one server is not completely
down but loses the ability to execute some tasks and keeps
the ability to execute at least one other task.

REFERENCES

A. H. Alhusaini, V. K. Prasanna, C.S. Raghavendra. 1999. “A
Unified Resource Scheduling Framework for
Heterogeneous, Computing Environments”, Proceedings of

the 8th IEEE Heterogeneous Computing Workshop, Puerto
Rico, pp.156- 166.

R.E. Bellman. 1957. “Dynamic Programming”. Princeton

University Press, Princeton, New Jersey.
H. Chen, M. Maheswaran 2002. “Distributed Dynamic

Scheduling of Composite Tasks on Grid Computing
Systems”, Proceedings of the 11th IEEE Heterogeneous

Computing Workshop ,pp. 88b-98b, Fort Lauderdale.
L. Chen, A. Avizienis. 1978. “N-version programming: a fault

tolerant approach to reliability of software operation”,
Proceeding of the IEEE Fault-Tolerant Computing

Symposium, pp. 3-9.
J.-Y. Colin, P. Chrétienne 1991. "Scheduling with Small

Communication Delays and Task Duplication", Operations

Research, vol. 39, n o 4, 680-684.

J.-Y. Colin , M. Nakechbandi, P. Colin, F. Guinand. 1999.
“Scheduling Tasks with communication Delays on Multi-
Levels Clusters”, PDPTA'99 : Parallel and Distributed

Techniques and Application, Las Vegas, U.S.A..
J.-Y. Colin , M. Nakechbandi, P. Colin. 2005. "A multi-valued

DAG model and an optimal PERT-like Algorithm for the
Distribution of Applications on Heterogeneous, Computing
Systems", PDPTA'05, Las Vegas, Nevada, USA, June, pp.
876-882.

M.J. Flynn. 1972. “Some computer organization and their
effectiveness.”, IEEE Transactions on Computer, pp. 948-
960, September.

M.R. Garey and D.S. Johnson. 1979. ”Computers and
Intractability, a Guide to the Theory of NP-Completeness”,
W. H. Freeman Company, San Francisco.

A. Girault, H. Kalla, and Y. Sorel. J 2004. “A scheduling
heuristics for distributed real-time embedded systems
tolerant to processor and communication media failures”.
International Journal of Production Research, 42(14):2877-
2898.

M. Iverson, F. Özgüner. 1998. “Dynamic, Competitive
Scheduling of Multible DAGs in a Distributes
Heterogeneous Environment”, Proceedings of the 7th IEEE

Heterogeneous Computing Workshop (HCW'98), pp. 70–78,
Orlando, Florida.

Yu-Kwong Kwok, and Ishfaq Ahmad. 1999. “Static scheduling
algorithms for allocating directed task graphs to
multiprocessors”, ACM Computing Surveys (CSUR), 31 (4):
406 – 471.

M. Maheswaran and H. J. Siegel. 1998. “A Dynamic matching
and scheduling algorithm for heterogeneous computing
systems”, Proceedings of the 7th IEEE Heterogeneous

Computing Workshop(HCW '98), pp. 57-69, Orlando,
Florida.

M. Nakechbandi, J.-Y. Colin , C. Delaruelle. 2002. “Bounding
the makespan of best pre-scheduling of task graphs with
fixed communication delays and random execution times on
a virtual distributed system”, OPODIS02, Reims; pp. 225-
233.

M. Nakechbandi, J.-Y. Colin, J.B. Gashumba. 2007. "An efficient
fault-tolerant scheduling algorithm for precedence
constrained tasks in heterogeneous distributed systems";
CIS2E06 International Joint Conferences on Computer,

Information, and Systems Sciences, and Engineering,
December, 2006. Published in : Innovations & advanced
techniques in computer & information sciences &
engineering, Springer, 06-2007, pp 301-307.

P. Palmerini. 2004. “On performance of data mining: from
algorithms to management systems for data exploration”,

PhD. Thesis: TD-2004-2, Universit`a Ca’Foscari di

Venezia.
X. Qin and H. Jiang. 2006. “A Novel Fault-tolerant Scheduling

Algorithm for Precedence Constrained Tasks in Real-Time
Heterogeneous Systems” , Parallel Computing, vol. 32, no.
5-6, pp. 331-356.

B. Randell. 1975. “System structure for software fault-tolerance”,
IEEE Trans. Software Eng. 1(2,) pp. 220-232.

Christoph Ruffner, Pedro José Marrón, Kurt Rothermel. 2003
“An Enhanced Application Model for Scheduling in Grid
Environments”, TR-2003-01, University of Stuttgart,

Institute of Parallel and Distributed Systems (IPVS).
H. Topcuoglu, S. Hariri, and M.-Y. Wu. 1999. “Task scheduling

algorithms for heterogeneous processors”. In 8th

Heterogeneous Computing Workshop (HCW’ 99), pp. 3–14.

Srikumar Venugopal, Rajkumar Buyya and Lyle Winton. 2004.
“A Grid Task Broker for Scheduling Distributed Data-
Oriented Applications on Global Grids”, Technical Report,

GRIDS-TR-2004-1, Grid Computing and Distributed

Systems Laboratory, University of Melbourne, Australia.

AUTHOR BIOGRAPHIES

Moustafa NAKECHBANDI is Associate Professor at the
University of Le Havre, France. He received a Ph.D (1984) in
Computer Science from Besançon University. His research
interests are in optimization problems relative to parallel
computing and in fault-tolerant scheduling.

Jean-Yves COLIN is Assistant Professor at the University of
Le Havre, France. He received a Ph.D (1989) in Computer
Science from Paris 6 University. His research interests include
scheduling in heterogeneous distributed systems, and
optimization of parallel programs.

