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ABSTRACT 

In this paper, we propose an efficient scheduling algorithm for 
problems in which tasks with precedence constraints and 
communication delays have to be scheduled on an heterogeneous 
distributed system with an one fault hypothesis.  Based on an 
extension of the Critical-Path Method CPM/PERT, our algorithm 
combines an optimal schedule with some additional tasks 
duplication, to provide fault-tolerance. Backup copies are not 
established for tasks that have already more than one original 
copy.  The result is a schedule in polynomial time that is optimal 
when there is no failure, and is a good resilient schedule in the 
case of one server failure. We finally compare the optimal 
solutions with the resilient solutions found by this algorithm on 
several  semi-random DAGs. 

I.  INTRODUCTION 

 Heterogeneous distributed systems have been 
increasingly used for scientific and commercial 
applications. Recent examples of such applications include 
Automated Document Factories (ADF) in banking 
environments where several hundred thousands documents 
are produced each day on networks of several 
multiprocessors servers. Or high performance Data Mining 
(DM) systems (Palmerini 2004) that need to process very 
large data collections using very  time-consuming 
algorithms. Or Grid Computing systems (Ruffner et al.  
2003, Venugopal  et al.  2004) such as Computational 
Grids which focus primarily on very computationally-
intensive operations, or Data Grids which control the 
sharing and management of large amounts of distributed 
data. 
 However, efficiently using these heterogeneous 
systems is a hard problem, because the general problem of 
optimally scheduling tasks is NP-complete, even when 
there are no communication delays (Kwok and Ahmad 
1999, Garey and Johnson 1979).   When the application 
tasks can be represented by Directed Acyclic Graphs 
(DAGs), many dynamic scheduling algorithms have been 
devised. For some examples, see (Maheswaran and Siegel 
1998, Iverson and Özgüner 1998, Chen, and Maheswaran 
2002). Also, several static algorithms for scheduling DAGs 
in meta-computing systems are described in (Colin and 
Chrétienne 1991, Topcuoglu et al. 1999, Alhusaini, et al. 
1999, Kwok and Ahmad 1999). Most of them suppose that 
tasks compete for limited processor resources, and thus 
these algorithms are mostly heuristics. Problems with fault 
tolerant aspects are less studied. Reliable execution of a set 

of tasks is usually achieved by task duplication and backup 
copies (Qin and Jiang 2006, Randell 1975, Chen and 
Avizienis 1978, Girault, et al. 2004).  
 A very classical and useful tool to study static 
scheduling problems with DAG is the Critical Path Method 
(also known as CPM, or PERT method, or CPM/PERT) 
(Maheswaran and Siegel 1998). Using a relaxation of the 
constraint on the number of available processors, this 
method gives results such as a lower bound on the 
execution time (or makespan) of the application and lower 
bounds on the execution dates of all tasks of the DAG. 
Because of the relaxation, tasks can be executed as soon as 
possible. Improvements and limits of this method to 
distributed systems with communications delays may be 
found in (Colin and Chrétienne 1991, Colin et al. 1999,   
Nakechbandi  et al.  2002), for example.  In (Colin  et al. 
2005), we studied the problem of scheduling the tasks of a 
DAG on the servers of an heterogeneous system. There, 
the relaxation used in CPM/PERT was replaced by the dual 
relaxation that each server has no constraint on the number 
of tasks it can simultaneously process. That is, each server 
can simultaneously process a non limited number of tasks 
without loss of performances. Our goal was to compute a 
lower bound on the execution time of a realistic solution, 
and compute lower bounds on the execution dates of all 
tasks of the DAG. In (Nakechbandi et al. 2007), we further 
supposed that one server (and at most one) could suffer 
from a crash fault. The algorithm presented there improved 
on the one presented in (Colin  et al. 2005) by adding 
backup copies to the optimal solution build.  
 The solution we propose now is simpler than the one 
presented in (Nakechbandi et al. 2007). Additionally, we 
present some numerical experiments and simulation 
results. This rest of this paper is divided into four main 
parts.  In the first one, we present the problem, and in the 
second one, we present a solution to the problem. In the 
third part, we make some numerical experiments using 
randomly generated tasks graphs, comparing the optimal 
solutions with the resilient solutions found by this 
algorithm. Finally, in the fourth part, we discuss the 
advantages and disadvantages of the proposed solution. 

II.  THE CENTRAL PROBLEM 

2.1 The Distributed Servers System 

 We call Distributed Servers System (DSS) a virtual set 
of geographically distributed, multi-users, heterogeneous 
or not, servers. Therefore, a DSS  has the following 
properties: first, the processing time of a task on a DSS 
may vary from a server to another. The processing time of 



 

each task on each server is supposed known.  Second, 
although it may be possible that some servers of a DSS are 
potentially able to execute all the tasks of an application, it 
may also be possible in some applications that some tasks 
may not be executed by all servers. In a DSS problem, we 
suppose that the needs of each task of an application are 
known, and that at least one server of the DSS may 
process it. 
 The classical CPM/PERT relaxation of the number of 
processors, is replaced in the DSS problem with the dual 
relaxation that each server has no constraint on the number 
of tasks it can simultaneously process. Thus we suppose 
that the concurrent executions of some tasks of the 
application on a server have a negligible effect on the 
processing time of any other task of the application on the 
same server. 
 The transmission delay of a result between two tasks 
depends on the tasks and on their respective sites. The 
communication delay between two tasks executed on the 
same server is supposed equal to 0. 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1: Example of Distributed Servers System with the list of the 

executable services for each server. 

2.2 Directed Acyclic Graph 

 An application is decomposed into a set of indivisible 
tasks that have to be processed. A task may need data or 
results from other tasks to fulfil its function and then send 
its results to other tasks. The transfers of data between the 
tasks introduce  dependencies between them. The resulting 
dependencies form a Directed Acyclic Graph. Because the 
servers are not necessarily identical, the processing time of 
a given task can vary from one server to the next. 
Furthermore, the duration of the transfer of a result on the 
network cannot be ignored. This communication delay is 
function of the size of the data to be transferred and of the 
transmission speed that the network can provide between 
the involved servers. Note that if two dependent tasks are 
processed themselves on the same server, this 
communication delay is considered to be 0.   
 The central scheduling problem P on a Distributed 
Server System, is represented therefore by the following 
parameters:   
• a set of servers, noted Σ = {σ1, ..., σs}, interconnected 

by a  network, 
• a set of the tasks of the application, noted I = {1,..., n}, 

to be executed on Σ. The execution of task i, i ∈ I, on 
server σr, σr ∈ Σ, is noted i/σr. The subset of the 
servers able to process task i is noted Σi, and may be 
different from Σ,  

• the processing times of each task i on a server σr is a 

positive value noted 
ri σπ   / . The set of processing 

times of a given task i on all servers of Σ is noted  

Πi(Σ). 
ri σπ   / = ∞ means that the task i cannot be 

executed by the server σr. 
• a set of the transmissions between the tasks of the 

application, noted U. The transmission of a result of an 
task i, i ∈ I, toward a task j, j ∈ I, is noted (i, j). It is 
supposed in the following that the tasks are numbered 
so that if (i, j) ∈ U, then i < j, 

• the communication delays of the transmission of the 
result (i, j) for a task i processed by server σr toward a 
task j processed by server σp is a positive value noted 

pr jic σσ /, / . The set of all possible  communication 

delays of the transmission of the result of task i, 
toward task j is noted ∆i,j(Σ). Note that a zero in ∆i,j(Σ)  
mean that i and j are on the same server, i.e. 

pr jic σσ /, / = 0 ⇒ σr  = σp.  And 
pr jic σσ /, / =  ∞ means 

that either task i cannot be executed by server σr, or 
task j cannot be executed by server σp, or both. 

 Let Π (Σ) = U
Ii∈

Πi (Σ) be the set of all processing 

times of the tasks of P on Σ.   

 Let ∆ (Σ) = U
Uji ∈),(

∆i,j (Σ) be  the set of all 

communication delays of transmissions (i, j) on Σ. 
 The central scheduling problem P on a distributed 
servers system DSS can be modelled by a multi-valued 
DAG G = {I, U, Π(Σ),  ∆(Σ)}. In this case we note  P={G, 
Σ}.  
Example 1 : Figure 2 presents an example of DAG.   
 

 
 
   
 
 
 
 
 

 

Fig. 2. Example of DAG : the Πi  vector on a node is the vector of the 

processing time of task i on the various servers, and ∆i,j  on an arc is the 

communication delays matrix between the two tasks depending on the 

servers that process them. 

 

  On this example, if we have 4 servers {σ1, σ2, σ3, σ4 }  

and if Π1 = ( 3333, ∞, 2, ∞),  then 1  /1 σπ =3. And 2  /1 σπ = ∞ , 
meaning that server σ2 cannot execute task 2 etc. 
 On the same example, communications from task 1 to 
task 2 are given by matrix ∆1,2 in Fig.3.  

    σ1 σσσσ2222 σ3 σ4 

σ1 0 3 2 ∞ 

σ2 ∞ ∞ ∞ ∞ 

σσσσ3333 2 3333 0 ∞ 

σ4 ∞ ∞ ∞ ∞ 

Fig. 3. Example of communication delays matrix ∆1,2   
between task 1 and task 2. 
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      In the matrix of Fig. 3, one can see that if task 1 is 
processed on server σ3  and task 2 is processed on server 
σ2 , then c1/σ3, 2/σ2  = 3. 

2.3. Definition of a feasible solution 

We note PRED(i), the set of the predecessors of task i in 

G:  { } ),(et  / )PRED( UikIkki ∈∈=  

 And we note SUCC(i), the set of the successors of task 

i in G: { } ),(et  / )SUCC( UjiIjji ∈∈=  

 A feasible solution S for the problem P is a subset of 
executions { i/σr , i∈I } with the following  properties:   
   
• each task i of the application is executed at least once 

on at least one server σr of Σi, 
• to each task i of the application executed by a server σr 

of Σi, is associated one positive execution date 
rit σ/ , 

• for each execution of a task i on a server σr, such that 
PRED(i) ≠ ∅, there is at least an execution of a task k, 
k ∈PRED(i), on a server σp, σp ∈ Σκ, that can transmit 

its result to server σr before the execution date 
rit σ/ .    

 The last condition, also known as the Generalized 
Precedence Constraint (GPC) (Colin et al. 1999), can be 
expressed more formally as:   
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 It means that if a communication must be done between 
two scheduled tasks, there is at least one execution of the 
first task on a server with enough delay between the end of 
this task and the beginning of the second one for the 
communication to take place.  A feasible solution S for the 
problem P is therefore a set of executions i/σr of all i tasks, 

i ∈ I, scheduled at their dates 
rit σ/ , and verifying the 

Generalised Precedence Constraints GPC.  Note that, in a 
feasible solution, several servers may simultaneously or 
not execute the same task. This may be useful to generate 
less communications.   All the executed tasks in this 
feasible solution, however, must respect the Generalized 
Dependence Constraints. 

2.4. Optimality Condition  

 Let T be the total processing time of an application 
(also known as the makespan of the application) in a 
feasible solution S, with T defined as: 

)(max // rr

r

ii
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tT σσ
σ
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 A feasible solution S* of the problem P modelled by a 
DAG G = {I, U, Π(Σ), ∆(Σ)} is optimal if its total 
processing time T* is minimal. That is, it does not exist 
any feasible solution S with a total processing time T such 
that T < T*. 

III.  THE DSS_1FAULT ALGORITHM 

 The algorithm proposed here, named DSS_1FAULT, 
has two phases: the first one is for the scheduling of 
original copies where we use the DSS-OPT algorithm 

(Colin  et al. 2005) and the second one is for adding and 
scheduling additional backups copies when necessary.  

3.1. Scheduling the original copies 

 We schedule original copies of tasks in our algorithm 
with the DSS-OPT algorithm (Colin  et al. 2005). The 
DSS-OPT algorithm is an extension of CPM/PERT 
algorithms type to the distributed servers problem. In its 
first phase, it computes the earliest feasible execution date 
of each task on every server, and in its second phase it 
builds a feasible solution (without server fault) starting 
from the end of the graph with the help of the earliest dates 
computed  in the first phase. 
 Let P be a DSS scheduling problem, and let G = {I, U, 
Π(Σ),  ∆(Σ)} be its DAG.  
 One can first note that there is an optimal trivial 
solution to this DSS scheduling problem. In this trivial 
solution, all possible tasks are executed on all possible 
servers, as soon as possible, and their results are then 
broadcasted to all others servers. This is an obvious waste 
of processing power and communication resources, 
however, and something as optimal, but less wasteful in 
terms of used resources, is usually needed.  
 The first phase of the DSS_OPT routine, DSS_LWB(), 
goes from the initial tasks to the final ones, computing 
along the way the earliest feasible execution dates 

r / ib σ and earliest end date r / ir σ ,  for all possible 

executions i/σr  of each task  i of problem P. 
 The second phase of the DSS_OPT routine determines, 
for every task i that does not have any successor in G, i.e. 
task i is a “leaf” or final task, the execution i/σr ending at 

the earliest possible date r / ir σ . If several executions of 

task i end at the same smallest date 
r / ib σ , one is chosen, 

arbitrarily or using other criteria of convenience, and kept 
in the solution. Then, for each kept execution i/σr that has 
at least one predecessor in the application, the subset Li of 
the executions of its predecessors that satisfy GPC(i/σr) is 
established. This subset of executions of predecessors of i 
contains at least an execution of each of its predecessors in 
G. One execution k/σp of every predecessor task k of task i 
is chosen in the subset, arbitrarily or using other criteria of 
convenience, and kept in the solution. It is executed at its 

earliest possible date 
p / kb σ . The examination of the 

predecessors is pursued in a recursive manner until the 
studied tasks do not present any predecessors in G.  

3.2. Adding backup copies 

 The ADD_BACKUP_COPIES routine starts from tasks 
without any predecessors, similarly to DSS_LWB(), and 
proceed from there to the end of the DAG. First, if there is 
currently only one copy of a given  task, it determines what 
is the worst possible delay it may encounter if a failure 
occurs on another server, while satisfying its GPC. It also 
determines the fastest server (not considering the server 
executing the only current copy of this task in the current 
solution) able to execute this task,  and adds a backup copy 
on this server to the solution, again considering the worst 
possible delay resulting from this failure, while satisfying 
the GPC of this copy. Else the task has already several 



 

copies in the optimal solution, and the routine determines 
for each original copy of this task, what is the worst 
possible delay it may encounter if a failure occurs on 
another server, while satisfying its GPC.  
 The complete DSS_1FAULT algorithm is the 
following: 

Input: G = {I, U, Π(Σ),  ∆(Σ)} 

Output: A feasible solution with backup copies  
DSS_1FAULT () 
  DSS_OPT()       // first phase 
  ADD_BACKUP_COPIES()     // second phase 

end  DSS_1FAULT 

DSS_OPT() 

 DSS_LWB ()     

 )(minmax /
)(SUCC/ r

ir

i
ii

rT σ
σ Σ∈∀∅=∀

=  

 for all tasks i such that SUCC(i) = ∅ do 

  iL  ← { i/σr / σr ∈ Σι   and  Tr
ri ≤σ/ } 

     i/σr  ←  keepOnefrom( iL ) 

  schedule (i/σr) 
 end for 

end DSS_OPT 

DSS_LWB() 

 for each task i where PRED(i) = ∅  do 
  for each server σr  such that  σr ∈ Σi  do 

   0/ ←
rib σ  

   
rr iir σ/ / πσ ←  

           end for 

  mark (i) 
       end for 
 while there is a non marked task i such that 

 all its predecessors  k in G  are marked  do 
  for each  server  σr  such that  σr ∈ Σi   do 

 ))(min(max /,///
)(PRED

/ rppp

kp

r ikkk
ik

i cbb σσσσ
σ

σ π ++←
Σ∈∀∈∀

 

   
rrr iii br σσσ π /// +←  

       end for 
  mark (i) 
    end while 

end DSS_LWB 

schedule(i/σσσσr) 

 execute the task i at the date 
rib σ/ on the server σr   

 if  PRED(i) ≠ ∅ then 
  for each task  k  such that  k ∈ PRED(i)  do 

   ri

kL
σ/

← { k/σq    /   σp ∈ Σκ   and   

                         
rrppp iikkk bcb σσσσσ π //,/// ≤++ } 

   k/σq ← keepOneFrom( ri

kL
σ/

) 

   schedule (k/σq) 
           end for 

       end if 

end schedule 

keepOneFrom(Li) 

       return an execution i/σr of task i in the list of the 
       executions Li.   
end keepOneFrom. 

ADD_BACKUP_COPIES() 

 for each task i such that PRED(i) =  ∅  do 

  if i has only one copy scheduled then 

      //compute one backup on the fastest server left, if  
                       // failure is on server of this copy 

      Let σ r ≠ σi be the fastest server able to execute i 
      Execute a new backup copy of i on σ r  at date 0 

  end if 
  mark (i) 
  end for 
 while there is a non marked task i such that all its 

predecessors k in G are marked  do 
  if i has only one copy scheduled then 
   Let σi  be the server executing the copy of i 
   // First compute the delayed execution date of 
   // task i on this server, if the failure is on an 
   // another server 
   find the delayed execution date of the copy of i 

on σ i taking only into account the delayed 
execution dates of the copies and backups of 
each predecessor of i to verify the GPC 

   // Second compute one backup copy on the 
   // fastest server left, if failure is on server of 
   // primary  
   Let σ r ≠ σi be the fastest server able to execute i 
   Execute a backup copy of i on σ r taking only 

into account the delayed execution dates of the 
copies and backups of each predecessor of i to 
verify the GPC 

  else  // i has at least two copies scheduled, on 
   // separate servers, of course 

   // compute the delayed execution date of the 
   // copy of task i on each server, if the failure is 
   // on an another server 
   for each server σ i executing a copy of i do 
    Find the delayed execution date of the 

copy of i on σ i taking only into account 
the delayed execution dates of the copies 
and backups of each predecessor of i to 
verify the GPC 

   end do 

  end if 
  mark (i) 
 end while 
end ADD_BACKUP_COPIES 

 
Example 2 : If we consider the graph of the example 1, 
and  using 4 servers the DSS_OPT gives the following 
optimal scheduling (Fig. 4.)  : 
 
 

 
Fig. 4. Gantt chart given by DSS_OPT. The fact that task 3 is executed at 

the same time that task 2 on server σ3 comes from the CPM/PERT 

relaxation. 
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By adding backup copies using ADD_BACKUP_COPIES 
we get the following fault-tolerance scheduling (Fig. 5.): 

 
Fig. 5. Gantt chart given by DSS_1FAULT 

 

 Because the computed execution time of each task on 
each server is its  earliest execution time on this server, and 
because only the copy with the earliest ending time, of 
each task without any successor, is used in the  solution 
calculated by DSS_OPT() , and finally because all other 
copies are used only if they ensure that the final copies 
receives their data in time else they are not used, it follows 
that the feasible solution computed by  DSS_OPT is 
optimal in execution time for the problem without server 
failure. 
 
Lemma 1: The feasible solution calculated by the DSS_OPT 
algorithm is optimal if there is no server failure. 
 Because the copies in the DSS_1FAULT solution 
coming from the DSS_OPT solution will not be delayed if 
there is no server failure, and because additional backup 
will not be used in this case, then we have: 
 
Theorem 1: The solution calculated by DSS_1FAULT is 
optimal if there is no server failure. 
 
 Also, in the final solution computed by 
DSS_1FAULT(), each task of the DAG has at least two 
copies (coming from the DSS_OPT() routine), or one copy  
(coming from the DSS_OPT() routine) and one backup 
copy (build by the ADD_BACKUP_COPY() routine) , 
always executed on different servers.  
 Furthermore, the execution date of each backup copy 
and the delayed execution date of each original copy 
coming from DSS_OPT is always evaluated by 
ADD_BACKUP_COPIES() taking into account the 
delayed execution dates of the copies and the execution 
dates of the backups copies of each predecessor, using the 
worst possible case of failure of a predecessor, we have: 
 
Theorem 2: The solution calculated by DSS_1FAULT is 
feasible if there is at most one server failure. 
 
 The most computationally intensive part of DSS_OPT() 
is the first part DSS_LWB(). In this part, for each task i, 
for each server executing i, for each predecessor j of i, for 
each server executing j, a small computation is done. Thus 
the complexity of DSS_LWB() is Ο(n2

s
2), where n is the 

number of tasks in P, and s is the number of servers in 

DSS.   Thus, the complexity of the DSS_OPT() algorithm 
is Ο(n2

s
2).  

 Similarly, in ADD_BACKUP_COPIES(), for each task 
i, for each copy of task i (at most one copy per server), for 
each predecessor j of i, for each copy of j (at most one per 
server), one small computation is done. Thus the 
complexity of ADD_BACKUP_COPIES() is bounded by 
Ο(n2

s
2), where n is the number of tasks in P, and s is the 

number of servers in DSS.   Thus we have: 
Theorem 3: The complexity of the DSS_1FAULT 
algorithm is Ο(n2

s
2).  

IV. PERFORMANCE EVALUATION 

 To evaluate DSS_1FAULT, we have compared the 
fault tolerant solutions it generated on some classical 
problems and DAG to optimal solutions without fault 
tolerancy. These numerical experiments were done using 
simulations on three different kinds of graphs. The first one 
is a simple, semi-random, one level ‘fork-join’ DAG (see 
Fig. 6. a.), with limited parallelism. The second one is a 
regular simple two-dimensional grid DAG (see Fig. 6. b.), 
exhibited by some numerical applications, with lot of 
parallelism and very local communications. The last one is 
the “butterfly” DAG (see Fig6. c.) present in applications 
such as the FFT or shuffles algorithms, again with lot of 
parallelism, but a more complex communication pattern. 
The servers performances are independent random values 
for each task of the DAG, and so is each communication 
delay. 

Fig. 6. Three different kind of graphs 

4.1. Fork-Join DAG 

 As expected, this kind of DAG does show a very 
limited parallelism. On the Gantt chart example in Fig. 7, 
one can distinguish the original copies of the tasks on the 
left part of each server’s simulated activity chart, and the 
added backup copies on the right part. 
 

 
Fig. 7. Gantt chart for Fork-Join DAG 

A. These lines represent the execution of the  originals copies 
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B.  These lines represent the execution of the backups copies. 

4.2. 2-Dimensional grid DAG 

 This highly parallel DAG is much more efficiently 
executed on the servers. On the Gantt chart example in Fig. 
8, the original copies of the tasks are grouped in the left 
part of each server’s simulated activity chart, with the 
added backup copies spread more widely on the rights part. 
Although this is not clearly visible on the black and white 
figure, some added backup copies of the earliest tasks of 
the DG are present in the mist of the original copies. 
 

 
Fig. 8. Gantt chart for grid DAG 

A. These lines represent the execution of the  originals copies  

 B.  These lines represent the execution of the backups copies. 

4.3. Butterfly DAG 

 The Butterfly is a highly parallel DAG too. On the 
Gantt chart example of Fig. 9, the original copies are 
clearly distinguishable one the left, as bands. Because of 
the random nature of the server’s performances, these 
bands tend to become fuzzier as time passes, however. The 
backup copies are scheduled later on the right part of the 
chart.  
 
 

Fig.9. Gantt chart for Butterfly DAG 

A.  These lines represent the execution of the  originals copies 

B.  These lines represent the execution of the backups copies. 

4.4. Makespan with and without backup copies 

 In all three kinds of DAGs, it is found that the 
makespan average with backup copies is between 1.5 

(usually) and 2 (at most) times the makespan without 
backup copies. For example, in the Butterfly DAGs, we 
obtained the following figure (Fig . 10). In this simulation 
the number of tasks varies from 10 to 1200 tasks and we 
have the average over 50 random DAGs. 
 

Fig.10.  Makespan average for Butterfly DAGs 

A. Makespan without backup, B. Makespan with backup, 

V. ANALYSIS 

 This algorithm has two advantages: 
• when no server fails, the DSS-1FAULT’s solution is 

optimal as it uses the optimal solution computed by 
DSS-OPT. 

• when there is a failure of one server, the DSS-
1FAULT’s solution is certain to finish correctly, 
because every tasks has two or more scheduled copies 
on different servers in the final solution. If more than 
one fault occur, the solution may still finish, but there 
is no guaranty there. 

 We do not establish backup copies for tasks which have 
already two or more original copies from the DSS-OPT 
algorithm scheduling to limit tasks duplication and 
processor. It also gives indications on the sensibility of an 
application to one server failure when compared to the 
solution without any server failure, because the makespan 
in the presence of one failure is a worst case analysis. 
 The model of failure, as it features at most 1 crash, may 
seem poor. However, if the probability of any failure is 
very low, and the probabilities of failure are independent, 
then the probability of two failures will be much smaller 
indeed. Furthermore, the algorithm may be extended to 2 
or more failures, by using two or more backup copies per 
task. The efficiency of this kind of solution to the “k-
failures” problem is not investigated, yet. 
 Finally, the solution solved by this new algorithm uses 
the classical CPM/PERT relaxation, namely that an 
unbounded number of tasks may be processed on each 
server in parallel without any effect on the tasks’ 
processing time, in the same sense that the CPM/PERT 
method do not consider resources constraints in order to 
get earliest execution dates. This relaxation is not far from 
the reality, if each server is a multiprocessors architecture. 
Or if each server is a time-shared, multi-users system with 
a permanent heavy load coming from other applications, 
and the tasks of an application on each server represent a 
negligible additional load. In other cases, the same way 
these CPM/PERT results are used in some real-life systems 
as the priority values of tasks in some list-scheduling 
algorithms, the result found by our algorithm may be used 
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as the first step of a list scheduling algorithm, in which the 
earliest execution dates of primary and backup copies are 
used as priority values to schedule these copies on the 
servers of a real-life system.  

VI.  CONCLUSION AND FUTURE WORKS 

 In this paper, we have proposed a polynomial 
scheduling algorithm in which tasks with precedence 
constraints and communication delays have to be 
scheduled on an heterogeneous distributed system 
environment with one fault hypothesis.  To provide a fault-
tolerant capability, we employed primary and backup 
copies.  But no backup copies were established for tasks 
which have more than one primary copy. 
 The result have been a schedule in polynomial time that 
gives earliest execution dates to copies of tasks when there 
is no failure, and is a good resilient schedule in the case of 
one failure. Performance evaluation on some DAGs gave 
an increase in case of one server failure in makespan of 1.5 
to 2 times the optimal makespan without server failure.  
 The execution dates of the original and backup copies 
may be used as priority values for list scheduling algorithm 
in cases of real-life, limited resources, and systems.  
 In our future work, we intend to study the same 
problem with sub-networks failures. Also, we intend to 
consider the problem of non permanent failures of servers.  
Finally, we want to consider the problem of the partial 
failure of one server, in which one server is not completely 
down but loses the ability to execute some tasks and keeps 
the ability to execute at least one other task. 
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