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ABSTRACT 

To solve TSP, we consider the class of genetic algorithms. One important operation in this algorithm is the selection 

strategy used to evaluate and select the individuals for crossing. The strategies adopted up to now, are the random 

selection or through the better circuit length.  In this paper, a new model for selection is introduced that operate on the 

characteristics of the edges of a given circuit (such as the variance of edges or the average). We finally go through some 

numerical experiments in which we test the efficiency of this new selection strategy. 
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1. INTRODUCTION 

In the Traveling Salesman Problem(TSP), one has to find a closed tour of minimal length connecting n given 

cities.TSP is one of the most famous combinatorial optimization problems shown to be NP-hard in the very 

early development of the complexity theory [10].  The TSP has become a standard tested for combinatorial 

optimization methods which attempt to find near–optimum solution to this NP-hard problem [7]. Many 

concrete logistics’ applications derive from this problem, which explains why it is so successful.   

There are simple algorithm solutions which exist to solve the problem. However, they may become 

problematic: when dimension increases, the complexity of algorithms increases exponentially and thus, very 

quickly, computation time is very high.  A lot of work in order to find a near perfect solution in a reasonable 

time has been proposed in the literature, including the classical local search algorithm [1], simulated 

annealing [11] tabu search[5], elastic nets [3], genetic algorithms [8], [9] and ant colonies [6]. Finally in a 

recent Ph.D. thesis [1] we find a comparative and experimental study of genetic algorithm applied to TSP. 

In this paper, we present a new genetic algorithm approach to the TSP based on a new selection policy for 

crossing using edges characteristics of individuals instead a random selection. 

The paper is organized as follows. Section2 describes the TSP and the genetic algorithm. In section 3 we 

give our selection strategies for crossing. In section 4 performance results for several TPS instances are 

presented. Section 5 concludes the paper. 

2. TRAVELING SALESMAN PROBLEM AND GENETIC ALGORITHM 
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Let G = (V, A, Ω) a graph defined by: 

 }x,...,x,{x 1-n10V  set of vertex. 

 2

ji V}x{x A  set of  arcs(edges). 

 Rnji jiji  ,, ];1,0[,)(    the costs labeling matrix. 

 
A Hamiltonian circuit xπ in G can be defined by: 

 

 ),...,,( )1()1()0(  nxxxx   where π is a permutation on {0,1,…,n-1} 

 The length  of a circuit xπ can define by   : R;  )0(),1(
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The Traveling Salesman Problem consists to find a Hamiltonian cycle xπ which has a minimal length. 

 

Now the Genetic Algorithm (GA) will be given as follows : 

 
Algorithm 1 

Begin 

1.  Compute an initial population g0  of N random individuals(or circuits) 

    while stop condition is false do  

2.    Select 2 individuals randomly 

3.    Construct 2 children with crossover 

4.    Add children to the population 

5.    Keep the N best individuals in the population 

6.    Apply mutation with a probability μ to every individual of the population. 

    end while 

End. (of algorithm) 

3. SELECTION STRATEGIES FOR CROSSING 

3.1 The entropy Hamiltonian circuit. 

We are inspired indirectly by the Cross-Entropy Method [2].  The main question  here is the global strategy 

to apply in order to have the population evolve,  this relates to the criteria used to choose the individuals that 

should be crossod-over (step 2 in the previous algorithm 1).  For this we define the entropy function: 

Definition : (entropy function ) an entropy function   : Ω → R a mathematical function,    ( x ) give a 

real value of  R corresponding to the quality (or the entropy) of the circuit x . 

Now we replace the step 2 by a new one as the selection will be based on best entropy evaluation and the 

smallest circuit, then we obtain a new scheme of genetic algorithm : 
Algorithm 2 

Begin 

1.  Compute an initial population g0  of N random individuals(or circuits) 

    while stop condition is false do  

2.    Select 2 best individuals: the first with respect to the function of 

      entropy the second individual is the smallest circuit;  

3.    Construct 2 children with crossover; 

4.    Add children to the population; 

5.    Keep the N best individuals in the population; 

6.    Apply mutation with a probability μ to every individual of the population; 

    end while 

End.(of algorithm) 
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In the next paragraphs, we shall discuss three strategies of selection for the step 2 in the algorithm 2. 

3.2 Entropy by variance strategy  

We define the entropy φ of  a circuit xπ by the variance function
1
 : 
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This method allows us to put in evidence the bad arcs hidden by a simple calculation of the sum of the 

costs. Nevertheless, it raises a problem as it leads to judge an ingenious individual  as being a bad individual 

if its standard deviation is bad (see figure 1). 

Example: 

 

Figure 1 : Example of individual throwing into question the selection by "entropy" 

3.3 Entropy by partial variances strategy 

In order to attenuate the phenomenon of the non selection of a good individual because of its standard 

deviation (or variance) elevated, we intend to elaborate a similar method that only takes account of a certain 

part of the arcs in the calculation of the standard deviation. The general idea is to divide the arcs of our 

individual in categories of length, for example shortest arcs and the longest arcs, then of each of these 

categories we compute  the standard deviation, and finally return an average of these standard deviations. 

More formally, if one considers a permutation on {0,1,…,n-1}, then ),...,,( )1()1()0(  nxxxx   

become ),...,,( )0()1()2()1()1()0(  xxxxxxx n . We considers now two sets of arcs AMin and AMax , 

and a real value  k such  

  5.0,0k   

 xAMin   is the set of  nkE   shortest arcs of  xπ 

 xAMax   is the set of  nkE   longest arcs of xπ 

We define now the functions δ1, δ2, φ1 et φ2 such that : 
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The new entropy  function is now : 
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The drawback of this method is that one doesn't know how to distinguish the case where the arcs of a same 

category of length are close to each other from the case where they are dispersed in our individual. Thus, an 

                                                 
1 The variance of a random variable is the expectation, or mean, of the squared deviation of that variable from its expected value 

 this individual is optimum 

 

 but it standard deviation (variance) is not the best. 
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individual who systematically alternates short arcs and long arcs will be judged good (see figure 2) whereas it 

is very bad. 

Example: 

 

Figure 2 : Example of individual throwing into question the selection by partial variance 

3.4 Entropy by partition of population strategy 

The two methods that we developed up to now are based on the same principle. Whatever the chosen 

evaluation, one determines the criteria of quality for a given individual, and then one selects the individuals 

judged as being of good quality for the crossing. But it raises an essential question: are two individuals both 

judged as being of good quality necessarily interesting to cross?   

Intuitively, one can think that no. Indeed, if one considers an individual A as being of good quality even 

though not optimal, and  B an individual different from A but also of good quality, nothing guarantees that B 

is going to possess the missing gene to A to reach the optimality, and vice-versa.    

Worse again, to the crossing, the gene of one can damage the interesting part of the gene of the other. 

Besides, at the time of the development of the method by partial variance, it has first been tested an 

evaluation on the  nkE   longest arcs, then on the  nkE   shortest arcs before considering an average 

of the two. It has been noted then that an evaluation on the variance of the shortest arcs had a tendency to 

disfavor the variance of the longest arcs. And it is more or less the same for an evaluation of the variance of 

the longest arcs that tend to disfavor the variance of the shortest arcs.     

On the other hand, it seems interesting to cross an individual of weak standard deviation (variance) on its 

longest arcs with an individual of weak standard deviation (variance) on its shortest arcs. This is the strategy 

that we intend to adopt (see figure 3). 

 

 

Figure 3 : Diagram of the global process of evolution on a partition population. 

reinsertion based on δ(xπ) 

selection based on φ1(xπ) 

selection based on φ2(xπ) 

crossing 

 The shortest arcs have a weak variance. 

 

 The longest arcs have a weak variance. 

 

 But the individual is not interesting 
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4. COMPUTATIONAL RESULTS 

The algorithms were implemented in Java by a student master project [4]. For all experiments, we set the 

number of cities to 50. Every case tested will be the subject of 20 successive executions of the algorithm. The 

crossing strategy used is the method given by Pál K.F 1993 [12].  In all the experiments, the following 

parameters were used: 

 the crossing rate: 60%,   

 the mutation rate: 0.2 ,  

 the selection is by roulette method, 

 the population size is 100 individuals, 

The results shown in table 1 give the 20 successive TPS tests (1, 2, …20), in each test we find the 

application of four selection strategies (random strategy, entropy by variance strategy, entropy by partial 

variances strategy, and entropy by partition of population strategy). 

 

 
Table 1: The 20 successive executions of the algorithm 

 

The table 2 is a synthesis of the table 1 in which the following indicators are used: 

 average: we simply calculate an average of the 20 results returned. This indicator informs us directly 

on the quality of the solution returned, 

 variance: we calculate here the variance of the 20 results, more this one will be low, more it will 

mean that the algorithm will be good in terms of reproducibility of the solution found, 

 gap to the best known result:  based on the average of the 20 tests and on the best solution known, 

we determine the" middle distance" remaining to reach the best solution known, 

 we give also the better circuit and the bad circuit. 
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strategy of selection 

the better 

circuit 

the bad 

circuit 

average variance gap to the best 

optimum known 

random selection strategy 3850 5172 4251.45 372.14 42.43% 

entropy by variance strategy  2985 3088 3043.55  30.82  1.96% 

entropy by variances partials strategy 2995 3182 3055.90  42.50  2.38% 

entropy by Partition of population strategy 2995 3201 3046.35  49.32  2.06% 

Table 2: The Results on the evaluation strategies 

 

The numerical tests are extremely conclusive.  Nevertheless, the algorithm remains perfectible enough 

since one is on average to 1.96% near the best optimum known (see table 2, line 2:  entropy by variance 

strategy). Also recall that at least 23 different solution to less of 2% of the best solution known. 

5. CONCLUSION 

We presented a genetic algorithm as a solution of the TSP, using a novel selection mechanism to select the 

individuals that should be crossed-over. The numerical experiments clearly indicate advantages and 

limitations of our algorithm. 
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