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Abstract A Directed Acyclic Graph (DAG) of tasks with small commu-
nication delays has to be scheduled on the identical parallel processors of
clusters connected by a hierarchical network. The number or processors
and of clusters is not limited. Message contention has to be avoided.
Task duplication is allowed. In this paper, we present a new polynomial
algorithm that computes the earliest start dates of all tasks and spreads
these tasks to use few processors per cluster, for a DAG with small com-
munication delays. It also avoids message contention, and always delivers
messages on time.
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1 Introduction

The e�cient use of distributed memory multiprocessors and grids is a very di�-
cult problem. An application is made of di�erent parts, with speci�c processing
times and communication delays, that need to be scheduled carefully. Examples
of applications include numerical analysis applications, logistics systems based
on heterogeneous distributed computing systems, high performance Data Mining
systems, and Automated Document Factories in banking environments.

In the classical scheduling problem with communication delays, a positive
processing time is associated to each task of a Directed Acyclic Graph (DAG)
and a positive communication delay is associated to each precedence constraint
between the tasks of this DAG. The tasks then have to be scheduled on the pro-
cessors of the distributed memory multiprocessor or grid. This problem is known
to be NP-hard in the general case even if the number of available processors is
not limited [8]. Many studies are currently available on several aspects of this
classical scheduling problem [3] [4] [5] [9] [13] [17] [18].

Task duplication, for example, is used in several studies to lower the commu-
nication overheads by executing identical copies of some of the tasks on di�erent
processors [1] [4] [5] [12].
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Hierarchical communications are taken into account in some studies too. The
processors are typically grouped into clusters, with communication between pro-
cessors of the same cluster being faster than communications between processors
of di�erent clusters [1] [7].

These problems are increasingly recognized to be unrealistic however, because
they do not consider message contention [2] [11] [14] [21]. In [15] for example,
the authors show the NP-Completeness of the two processor scheduling problem
with tasks of execution time 1 or 2 units, unit interprocessor communication
latency and message contention. In [6], a CPM/PERT-like polynomial schedul-
ing algorithm for DAG with small communication delays and task duplication
is proposed. It is optimal and always avoids message contention, if resources are
not limited. It does not consider hierarchical communications, however. More
recent studies use heuristics to avoid message contention, and present extensive
experimental evaluations to evaluate performance improvements [19] [20].

In this paper, we present a new polynomial algorithm for DAG with small
communication delays. The distributed architecture is made of clusters, has
a two level communication network and has communication channels that can
transmit at most one message at any time. The algorithm computes, if resources
are not limited, the earliest start dates of all tasks and spreads these tasks to use
few processors per cluster. It also schedules the communications so that message
contention is avoided, and always delivers messages on time.

2 The 2lVds Problem

2.1 The 2lVds Model

A 2-levels Virtual Distributed System architecture (2lVds) is a distributed mem-
ory multi-processor architecture (or grid) with a not limited number of homo-
geneous processors. The processors are grouped into clusters. Both the number
of clusters and the number of processors in each cluster are not limited. Each
processor belongs to one and only one cluster (Fig. 1).

There is a complete communication network between all the processors. Each
direct connection between any two processors is made of two unidirectional chan-
nels, one in each direction. All communications channels inside all clusters are
identical and all communications channels between processors of di�erent clus-
ters are identical too, but slower than the intra-cluster channels. Each unidirec-
tional channel may carry at most one message at any time.

An application is represented by a DAG G = (V,E) (or precedence graph)
where V designates the set of tasks, and E the set of precedence constraints.
Formally, a 2lVds scheduling problem may then be speci�ed by the four pa-
rameters V,E, p, c, in which V = {1, 2, ...n} is the set of n tasks, E is the set of
arcs (i, j) with (i, j) ∈ E representing a precedence constraint from task i ∈ V
to task j ∈ V , p is the set of processing times with pi ∈ p being the processing
time of task i ∈ V on any processor π of the 2lVds architecture, and c is the
set of communications delays. To each arc (i, j) ∈ E are associated two val-
ues ci,j(1) ∈ c and ci,j(2) ∈ c. ci,j(1) is the positive communication delay of a
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Figure 1. A 2lVds architecture

message from task i to task j, if i and j are executed on di�erent processors in-
side the same cluster (intra-cluster communication delay). ci,j(2) is the positive
communication delay of a message from task i to task j, if i and j are executed
in di�erent clusters (inter-cluster communication delay), with ci,j(1) ≤ ci,j(2).
If two communicating tasks i and j are executed on the same processor, there
is no need for any communication or its duration is considered negligible, so the
communication delay is then 0.

A task is indivisible, starts when all the data it needs from its predecessors
are available, and sends all the data needed by its successors at the end of its
execution.

All the immediate successors of a task use the same result from this task.
This assumption implies that a task needs to send one message only to a given
processor, even if several of its successors are to be processed on it, because one
message is enough for all. If it does not hold, the task may usually be divided
into sub-tasks such that the assumption is satis�ed.

Fig. 2 presents an example of such a DAG. The value above each node is its
processing time, and the two values above each arc are its two communication
delays.
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Figure 2. Example of a DAG with two communication delays

Task duplication is allowed. That is, several instances (or copies) of the same
task may be executed on di�erent processors. We will denote ik the kth copy of



task i. Because we must take into account the messages in a schedule, we will
denote m(ik, jl) a message sent from a copy ik of task i to a copy jl of task j.

A schedule S of a 2lVds scheduling problem is then a 5-tuple (F, tc, π, M,

tm), where

F (i) is the positive number of copies of task i ∈ V ,
tc(ik) is the starting time of copy ik of task i, 0 < k ≤ F (i),
π(ik) is the processor assigned to copy ik of task i, 0 < k ≤ F (i),
M(i, j) is the set of all messages sent by copies of task i to copies of task j,
tm(m(ik, jl)) is the starting time of message m(ik, jl) ∈M(i, j).

First, to be feasible, a schedule S must satisfy the following conditions:

� at least one copy of each task is processed, i.e. ∀i ∈ V , F (i) > 0,
� at any time, a processor executes at most one copy,
� for each (i, j) ∈ E, for any copy jl of j, there is one copy ik of i that is on the
same processor or that sends its message on time to jl, i.e.

if π(jl) = π(ik) then
tc(jl) ≥ tc(ik) + pi

else if π(jl) and π(ik) are in the same cluster then
tc(jl) ≥ tc(ik) + pi + ci,j(1)

else

tc(jl) ≥ tc(ik) + pi + ci,j(2)
end if

If, in a schedule S, ik and jl satisfy the above condition, we will say that
the Generalized Precedence Constraint is true for the two copies (in short, that
GPC(ik, jl) is true).

Second, a feasible schedule S must additionally satisfy the condition that
there is no message contention, i.e. in all channels used to transmit at least two
messages m(ik, jl) and m(rt, sq) from a processor πik to a processor πjl , with
message m(ik, jl) �nishing before message m(rt, sq), we have

if if π(jl) and π(ik) are in the same cluster then

tm(m(rt, sq)) ≥ tm(m(ik, jl)) + ci,j(1)
else

tm(m(rt, sq)) ≥ tm(m(ik, jl)) + ci,j(2)
end if

Now, let C(ik) be the completion time of a copy ik of a task i, i.e. C(ik) =
tc(ik) + pi. The maximum completion time, or makespan, Cmax of a solution S
is the largest completion time of all copies of all tasks in this solution:

Cmax = max
i∈V,k≤F (i)

{tc(ik) + pi} . (1)

As usual for this kind of problem, we want to minimize Cmax, that is, �nd a
feasible solution S∗ with the smallest makespan C∗max.

One can note that, if ci,j(1) = ci,j(2), this scheduling problem is actually
equivalent to the classical DAG scheduling problem with communication delays



which, in the general case, is a NP-hard problem, even if the number of processors
is not limited [16]. For this reason, we will only consider a DAG satisfying the
conditions in the following two equations. They guarantee that the DAG has
small communication delays. We will denote PRED(i) (respectively SUCC (i))
the set of immediate predecessors (resp. successors) of task i in G.

∀i ∈ V, min
g∈PRED(i)

pg ≥ max
h∈PRED(i)−{g}

ch,i(1) . (2)

Equation (2) means that processing times are locally superior or equal to the
communication delays inside the clusters. It ensures that the earliest start date
of any copy of each task may be computed in polynomial time.

∀i ∈ V, min
k∈SUCC(i)

pk ≥ max
j∈SUCC(i)−{k}

ci,j(2) . (3)

Equation (3) is very similar to (2). It means too that the processing times
are locally superior or equal to the communication delays between the clusters.
However, (2) deals with the predecessors of a task and with the intra-clusters
communication delays, while (3) deals with the successors, and with the inter-
clusters communication delays. Also (2) is true in most cases if (3) is true.

One can note that there is already a trivial solution to the 2lVds problem:
use one cluster only, and schedule all tasks on the processors of this cluster using
the algorithm in [6]. This trivial solution, however, is not helpful at all, because
real architectures have a limited number of processors in each cluster. For this
reason, we propose the following new algorithm 2lVdsOpt. It schedules the
tasks and communications in a 2lVds problem in polynomial time and spreads
the tasks on as many clusters as possible to use less processors per cluster.

2.2 The 2lVdsOpt Algorithm

This algorithm has four steps. The �rst step 2lVdsLwb() computes the earliest
start date of all copies of each task of the DAG. The second step 2lVdsCs()
computes the critical sequences of the DAG according to the earliest start dates
calculated during the �rst step. The third step 2lVdsCc() computes the graph
of the critical sequences of the DAG, and its connected components according
to the communication delays ci,j(1). The last step 2lVdsBuild() computes the
solution, scheduling the tasks and communication on the 2lVds architecture.

Computing the Earliest Start Dates. The �rst step of 2lVdsOpt computes
the earliest start date bi of all copies of each task i of the DAG. This is done
in procedure 2lVdsLwb() (cf. Algorithm 1). Table 1 presents the earliest start
dates of each task of the DAG of Fig. 2 computed by procedure 2lVdsLwb().

Computing the Critical Sequences. The second step of 2lVdsOpt com-
putes the critical sequences resulting from the earliest start dates calculated
during step 1.



Algorithm 1 procedure 2lVdsLwb(V , E, p, c)

for all tasks i ∈ V such that PRED(i) = ∅ do

let bi = 0 {assign 0 to i as its earliest start date bi}
end for

while there is a task i which has not been assigned an earliest starting date bi and
whose predecessors h ∈ PRED(i) all have an earliest starting date bh assigned to
them do

let c = maxh∈PRED(i) bh + ph + ch,i(1)
�nd g ∈ PRED(i) such that bh + ph + ch,i(1) = c
let bi = max

(
bg + pg,maxh∈PRED(i)−{g} bh + ph + ch,i(1)

)
end while

Table 1. Earliest start dates bi of the tasks i of the DAG of Fig. 2 computed by
procedure 2lVdsLwb() (cf. Algorithm 1)

task i: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

bi: 0 2 4 6 4 7 9 11 0 9 11 13 11 14 16 18

Let B be the set of the earliest start dates bi of all tasks of V .
Let GC be the critical subgraph of G according to the earliest start dates in

B. (i, j) is an arc of GC if (i, j) ∈ E and bj < bi + pi + ci,j(1). That is, an arc
(i, j) in GC means that these two tasks must have copies on the same processor,
because there is not enough delay to transmit the result of any copy ik to a copy
jl from one processor to another processor of the same cluster. GC is always a
forest [5]. A critical sequence sc of the DAG is a proper path of GC.

The computation is done in procedure 2lVdsCs() (cf. Algorithm 2).

Algorithm 2 procedure 2lVdsCs(V , E, p, c, B)

GC = ∅
for all arcs (i, j) ∈ E do

if bj < bi + pi + ci,j(1) then
GC = GC ∪ {(i, j)}

end if

end for

s = 0
for all tasks i ∈ V do

if task i is a leaf of the critical subgraph GC then

let critical sequence scs be the path from the root of the tree in GC that includes
task i, to task i
s = s+ 1

end if

end for



Computing the Graph of the Critical Sequences. The third step of 2lVd-
sOpt builds the undirected graph GSC of the critical sequences scs and com-
putes its connected components [10].

Let CC be the set of all computed critical sequences scs.

GSC has one node ss for each critical sequence scs of CC computed during
the previous step. Also, there is one edge (ss, st) or (st, ss) in GSC if ∃(i, j) ∈ E,
with i ∈ scs, and i /∈ sct, and j ∈ sct, such that bj < bi + pi + ci,j(2). This edge
means that there is not enough time to transmit one message between at least
one task i of scs to another task j of sct between two clusters. So scs and sct
must be processed in the same cluster.

The computation is done in procedure 2lVdsCc() (cf. Algorithm 3).

Algorithm 3 procedure 2lVdsCc(V , E, p, c, B, CC)

GSC = ∅
for all critical sequences scs ∈ CC do

let ss be the new node related to scs
end for

for all nodes ss do
GSC = GSC ∪ {ss}
for all nodes st ∈ GSC − {ss} do
if there is no edge between ss and st in GSC and there is at least one arc (i, j)
of E with i ∈ scs and i /∈ sct and j ∈ sct, such that bi < bi + pi + ci,j(2) then
add one edge between ss and st to GSC

end if

end for

end for

compute the connected components gs of GSC

Fig. 3 shows the six critical sequences sc1 to sc6 found for the DAG of Fig. 2
using the computed earliest start dates in Table 1. It also shows the graph of
the critical sequences and its two connected components.

Computing the Solution. The last step of 2lVdsOpt builds a solution with
minimal makespan using all the data computed in the preceding phases.

One cluster is allocated to each connected component, and one processor of
this cluster is allocated to each critical sequence of this connected component.
One copy of each task of each critical sequence is executed at its earliest start
date. All messages are sent as soon as the sending copy of the task �nishes its
execution.

The computation is done in procedure 2lVdsBuild() (cf. Algorithm 4).

Fig. 4 shows the Gantt chart of the �nal schedule found for the DAG of
Fig. 2. Two clusters, each with three processors, are used. Tasks 1, 2, 9 and 10
have two copies each in this schedule.
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Figure 3. The six critical sequences sc1 to sc6 in the critical graph GC of the DAG
in Fig. 2 (left), and the graph GSC of these critical sequences with the two resulting
connected components (right)

Algorithm 4 procedure 2lVdsBuild(V , E, p, c, B, CC, GSC)

for all connected components gc ∈ GSC do

allocate a new cluster Πc to gc
for all node ss ∈ gc do
let scs be the critical sequence related to node ss
allocate a new processor πs in cluster Πc to this critical sequence scs
for all task i ∈ scs do
F (i) = F (i) + 1, tc(iF (i)) = bi, π(iF (i)) = πs

end for

end for

end for

for all copy jl of task j do
let π(jl) be the processor that executes jl
for all task i ∈ PRED(j) do
if there is no copy of task i on π(jl) and π(jl) does not already receive one
message from any copy of i on time for copy jl then
remove any message m′ from any copy of i to processor π(jl)
�nd one copy ik that can send its message on time to jl
send one message m(ik, jl) from copy ik at date bi + pi to processor π(jl)

end if

end for

end for

cluster
Π1

π1 11 21 31 41
π2 12 22 51
π3 61 71 81

cluster
Π2

π4 91 101111121
π5 92 102131
π6 141151161
0 2 4 6 8 10 12 14 16 18 20

time

Figure 4. Gantt chart of the solution of the DAG of Fig. 2, using two clusters Π1 and
Π2, with three processors per cluster (π1, π2 and π3 in Π1, and π4, π5 and π6 in Π2)



2.3 Analysis of the Algorithm

Let n be the number of tasks and m be the number of arcs.
The complexity of procedure 2lVdsLwb() is O(max(m,n)), and the com-

plexity of procedure 2lVdsCs() is O(m). The complexity of building the graph
of the critical sequences in 2lVdsCc() is O(n) [5], and of computing its con-
nected components is O(n). Thus the complexity of 2lVdsCc() is O(n) too.

Using a graph-level approach, one can show that the complexity of the �rst
part of 2lVdsBuild() is O(n2). Because the second part of 2lVdsBuild()
tries, in the worst case, to �nd one suitable copy of each predecessor for each
copy of each task, it is possible to establish that the complexity of this second
part is O(m2n2). The complexity of procedure 2lVdsBuild() is then O(m2n2).

So the complexity of the overall algorithm is O(m2n2).
Also, we have the following theorems.

Theorem 1. The solution built by 2lVdsOpt has minimal makespan.

Theorem 2. At least one copy of each task is executed.

Theorem 3. The GPC are true for all copies of all tasks.

Theorem 4. In the solution computed, each copy of each task receives at least

one message on time from at least one copy of each of its predecessor, if a

message is needed.

Theorem 5. There is no message contention on any unidirectional channel.

3 Conclusion

A Directed Acyclic Graph of tasks with small communication delays had to be
scheduled on the identical parallel processors of several clusters connected by
a hierarchical network. The number of processors and of clusters was not lim-
ited. Message contention had to be avoided. Task duplication was allowed. We
presented a new polynomial algorithm that computes the earliest start dates of
tasks and spreads these tasks to use few processors per cluster. It also schedules
the communications so that there is no message contention and messages are
always delivered on time.
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